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Recipes for Degrees of Freedom of Frequency
Stability Estimators

Charles A. Greenhall

Abstract—The Allan variance for an averaging time 1 can be
estimated either from all available phase samples or from a
subgrid of samples with spacing t. This paper gives a set of
computational recipes that yield the variance of both esti-
mators, with less than 2% error, for the five power-law com-
ponents of the classical continuous-time clock noise model.

I. INTRODUCTION
A. Estimators of Allan Variance

ET X(r) be the time difference of two clocks at time

t. If the clocks are both derived from oscillators run-
ning at nominal frequency fy, then X(f) = ¢ ()/(27fy),
where ¢ () is the difference of the phases of the two os-
cillators. Thus, if scaling is unimportant, the terms ‘‘time
deviation’’ and ‘‘phase deviation’’ are often used inter-
changeably.

Define the second increment Z(z, 7) by

Z(it, 1) = X(1) — 2X(t + 7) + X(t + 27)
= A2X()

where A, is the forward difference operator: A,f () = f(¢
+ 7) — f(¢) for any function f. Assume that X(¢) can be
modeled as a random process with wide-sense stationary
second increments. This means that for each 7 the process
Z(t, 7) is a wide-sense stationary random function of ¢.
The Allan variance, or two-sample variance, is then de-
fined for 7 > 0 by

1
oi(n) = 52 82, 1)

where & is the operator of mathematical expectation or
ensemble average. This is the standard measure of mean-
squared stability of the average fractional frequency
A X(0) /7 [11).

Given N equally spaced samples X; = X(i7g), i = 0 to
N — 1, and a desired averaging time 7 = nr,, where n is
an integer satisfying 1 < n < N/2, one can form M =
N — 2n samples of Z(z, 7), namely,

Z(iT(h T) = XI - 2Xi+n + Xi+2n, i=0toM - 1.
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The maximal-overlap estimator of 27° 03 (7) is given by
M-1

VM, 7, 10) = 1%4 EO Z%(itg, 7). '6))

Although Yoshimura [10] calls this the ‘‘continuous sam-
pling method,”” we wish to reserve the term continuous
overlap for the limiting case of (1) in which M and 7 /7,
both tend to infinity with the ratio M7,/ tending to a
positive value. A more traditional estimator, called the
tau-overlap estimator, is given by

m-—1

Vim, 1, 1) = % EO Zir, 1) )

where m is the number of 7-spaced samples of Z(z, 7). In
the above sampling scheme, m = int (N — 1)/n) — 1,
where int (x) is the greatest integer less than or equal to
x.

Both estimators are positive and unbiased. A measure
of quality that can be applied to a positive unbiased esti-
mator V with finite variance is its degrees of freedom
(d.f.), defined by

(325
T ovarV

Theoretical and Monte Carlo studies [15], [5], [6] on
Gaussian clock noise models have shown that the esti-
mator V = V(M, 1, ¢) is approximately proportional in
distribution to the chi-square random variable with the
same d.f. as V. Thus, if it is known that d.f. = », then
the probability levels of the x 2 distribution can be used to
derive approximate confidence intervals for the unknown
value &V (see [6] for instructions).

d.f.

B. Motivation for the Present Work

For the tau-overlap estimator, Lesage and Audoin [1]-
[4] and Yoshimura [5] computed d.f. for the five power-
law components of the classical continuous-time clock
noise model [11], a description of which is given in Sec-
tion II. This work is essentially complete. For the maxi-
mal-overlap estimator, Howe et al. [6] gave a set of for-
mulas for d.f. for the five clock noise components. Some
of these formulas are empirical and based partly on sim-
ulations. Recently, using exact theory, Yoshimura [10]
gave a set of graphs giving maximal-overlap d.f. for each
clock noise component as a function of M and n for 1 <
M < 100and 1 < n < 50to 100, and also gave graphical
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comparisons of the performance of the maximal-overlap
and tau-overlap estimators as functions of N and n. Al-
though Yoshimura’s results appear to be accurate, one
might wish to have programmable formulas for them, or
to obtain values of d.f. for M or n outside these ranges.
Also, for the flicker-phase component, d.f. depends on a
time-bandwidth product whose value is fixed in Yoshi-
mura’s graphs. Thus, the purpose of the present work is
to give a set of recipes that compute the theoretical d.f.
of the maximal-overlap estimator, with the d.f. of the tau-
overlap estimator included as a special case. Whenever
exact closed-form expressions could be achieved, they
were used. Otherwise, approximation formulas whose
maximal error is 2% forall M = 1 and n = 1 were con-
structed. The resulting set of formulas was converted to
pseudocode, which, in turn, was coded in Fortran and
Basic.

The exact value of d.f. can easily be computed from a
sum of M terms (see (5), (6), and the formulas for r(x, 7)
below). Nevertheless, the recipes may save computer time
and give greater insight into the roles of the variables. In
particular, they can be used for evaluating limiting situ-
ations, for example, the continuous-overlap limit men-
tioned above, or the large-sample limit in which n is fixed
and M becomes large.

II. METHOD OF COMPUTATION

We began by assuming that the time deviation process
X(¢) has stationary second increments Z(z, 7). It is now
necessary to assume further that Z(¢, 7) is a mean-zero
Gaussian process, and is ergodic in the sense that the time
average of Z(t, 7y over 0 < ¢ < T tends to zero in the
mean-square sense as 7 tends to infinity.

The mean-zero assumption is crucial. It says that the
relative long-term frequency drift rate D of the two clocks
is zero, or that it has previously been measured and the
appropriate term Dr? /2 subtracted from X(r). The results
given here are invalid for all 7 large enough that linear
frequency drift dominates the Allan variance. Moreover,
if one uses the current data to estimate drift rate in order
to subtract it from the data, estimates of residual Allan
variance can have a large negative bias if 7 is not much
less than the data duration [7]. This is caused by the high-
pass filtering effect of the subtraction [13].

A. Expression for Degrees of Freedom

For fixed 7, let Z, = Z(ity, 7), and V = (1/M) M}
Z?, the maximal-overlap estimator defined by (1). We
want to calculate the variance of V, namely,

var V = §V? — (V)
= # 2 ]Z [8(Z2Z}) — (§Z)(8Z])].

It can be shown that the expectation of the product of any
four mean-zero, jointly-Gaussian random variables T, 75,
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T, T, satisfies
§(MLTT) = 8(MT)E(TT) + &(TTy) &(TLTL)
+ &(T\T) &(T,T3).

Setting T, =T, = Z;, T; = Ty = Z;leads to

var V = # ; ]Z 2[8(21.‘2].)]2.
For each fixed 7, let R(¢, 7) be the autocovariance function
of the stationary process Z(t, 7). Then

Rt — u, ) = &§(Z@t, 1) Z(u, 1)].

In terms of this function, the mean and variance of V can
be written

&V = RO, 7),
o) M-1M-1
_~ al 2//0 _ s
var V = o _;0 ,Z‘o R — j)70, 7)

which, after a change of variable in the double sum, be-
comes

M-1
var V = A%[RZ(O, n+2 % (- k/M)R*(kr,, T)}.

3)

It is convenient to introduce a scaled version of R(z, 7).
Let

rix, 7y = R(mx, 7) 4)
and, recalling that 7 = nr,, let
x,=k/n, p=M/n.

Then the degrees of freedom, d.f. = 2(& VY /var V, is
given by

M
df. =2~ )
where
M-1
Fot = =07 [rz(O, ) +2 El (1 = x¢/p)r’(xe 1)]

(6)
(Yoshimura’s terminology). Notice that Fct /n is the trap-

ezoidal approximation to the integral

2 p
Fac = m So (1 — x/p)yrix, 7) dx. ©)

Some of the recipes compute Fac and apply correction

terms to get Fct/n. This is convenient because, for some
of the power-law noise models treated below, r(x, 7) /r(,
7) is a continuous function that depends only on x, not 7.
In this case, Fac depends only on p, and is the continuous-
overlap limit of Fct/n.
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B. Autocovariance Functions

The autocovariance function R(¢, 7) of the second in-
crements Z(¢, 7) must now be obtained for the components
of the clock noise model. Lesage and Audoin [1] obtained
R(t, 7) in terms of an integral over the frequency domain,
although they started from a time-domain formula that is
formally identical to (8) below. Yoshimura [5], [10] was
able to express R(z, 7) in terms of the K-sample variance
oﬁ(K , 7), expressions for which are known [14]. Notwith-
standing these derivations, the author feels that the method
of the generalized autocovariance function [7], [8] de-
serves further attention because of its simplicity and its
applicability to a variety of covariance computations. This
theory shows that for any real process X(r) with wide-sense
stationary nth increments there is a (non-unique) contin-
uous function, call it Ry (), such that

S[ATX(H) ATXw)] = 6" Ryt — u)

where 62 is the central difference operator of order 2n.
In particular, for n = 2 we have

R(t, 1) = 67Rx(1)
= 6Rx(t) - 4Rx(t - T) - 4Rx(t + T)
+ Ry(t — 27) + Ry(t + 27). ®)

If X is stationary, like white phase noise, then Ry (?) is the
usual autocovariance function of X. If X has stationary
first increments but is not stationary, like flicker phase
noise and white frequency noise, then Rx(f) equals
—(1/2)&[X(z) — X(0))* plus an arbitrary constant. If X
has stationary second increments but does not have sta-
tionary first increments, like flicker frequency noise and
random walk frequency noise, then the author does not
know any time-domain second-moment interpretation of
Ry (1), which is derived by performing a certain general-
ized Fourier transform operation on the spectral density
of X [8]. Because one always applies fourth-order differ-
ence operators to Ry(#), one may add to it an arbitrary
polynomial of ¢ of degree <3. As noted above, (8) gives
rigorous meaning to the terms of (17) of Lesage and Au-
doin [1].

The scaled autocovariance function r(x, 7) defined by
(4) is given by

rix, 1) = 81 f,(x)

where f, (x) = Ry(7x). For power-law noises, it often turns
out that the scaled autocorrelation function r(x, 7) /r(0, 7)
is a function of x only. This is a self-similarity property.

Let us now give Ry(?) and r(x, 7) for the components
of the classical clock noise signal. The one-sided spectral
density of X(¢) is denoted by Sy (¢). Although the conven-
tional multiplicative constants are irrelevant to the present
work, they are given here for the sake of completeness.
In the r(x, 7) formulas, however, the constants are reset
to whatever seems convenient. Moreover, except for
flicker phase noise, the indicated dependence on 7 can be
dropped.

White Phase:
h
Sc(f) =5 f<h
=0, f>fh
ha gy
Rx(0) = ﬁ = var X,
Rx(®) = o(1), wylt] > 1.

where w, = 2xf;, and o(1) is an error term that tends to
zero as ¢ tends to infinity. For r(x), we have

r(O) = 61 r(il) = _41

and r(x) is small if the distance of the point |x| from the
set {0, 1, 2} is much greater than 1 /(wj, 7). This condition
is satisfied for x; in (6) if k is not equal to »n or 2n, and
w, 7o >> 1 (in other words, if 74 is much greater than the
decorrelation time of X(?)).

Flicker Phase:

r+£2) =1

h
() =g2f™ f<h

=0, f>4f
h Ys t=0,
Ry(t) = —5.
4" (—log (whlt]) + o(1),  wult] > 1,
where v is Euler’s constant, 0.5772- - - . Before comput-

ing r(x, 1), it is convenient to add log (w;, 7) to Rx(?); then
the modified Ry (7x) is ¥ + log (w;,7) forx = 0, and —log
[x] + o(1) for x| >> 1/(w,7). Setting

L =+ + log (w,7)
and applying the 8% operator gives
r0, 7) = 6L — 2 log 2,
r(l,7) = —4L + 4 log 2 — log 3,
r2,7) =L - 8log2 + 4log 3,
rx, 7) = —51 log |x|
if |x| stays away.from {0, 1, 2} as with white phase noise.

White Frequency:

h
() = 3 f 7

Ry() = _% le]
r0) =2, r(£l) = —1,
rx) =0, x| = 2,

and r(x) is linear for0 < |x| = 1and 1 < |x| = 2.
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Flicker Frequency:
h
= =1 -3
Sx(f) = 47r2f ,

h_
Re(®) = —* 1* log [r]

(and Rx(0) = 0). Since Ry(7x) = const - 72x2 (log 7 +
log |x|), which effectively is x* log |x|, we have

rx) = 6(x* log |x|).
Random Walk Frequency:
h, ._
Sx(f) = 3537

h_,m?
Ry(t) = =2

o,

and Ry (7x) effectively is |x|*. Applying &1 gives
rx) = 4 — 6x* + 3x’,

=@ -

=0,

O0=x=1,
l<x=<2,

x =2,

and r(—x) = r(x).

Fig. 1 shows the qualitative differences among the au-
tocorrelation functions r(x) /r(0) for the five noise types,
where w, 7 = 100 for flicker phase noise.

III. OVERVIEW OF RECIPES

Each of the five clock-noise power law processes has
its own recipe, whose aim is the exact or approximate
computation of the d.f. of the Allan variance estimator
(1). The exact d.f. is given by (5) and (6), where r(x, 7),
the scaled autocovariance function of the second incre-
ments, is given in the previous section for each noise type.

The inputs of each recipe are n = 7/7¢, and M = num-
ber of second 7-increment samples overlapped by 7y. For
white phase and flicker phase, the time-bandwidth as-
sumption 2xf, 79 >> 1 is required, where f;, is the high-
frequency cutoff of the phase spectral density. For flicker
phase, 2xf, 7o must also be supplied as an input parame-
ter.

The output of the recipe is d.f., the degrees of freedom
of the maximal-overlap estimator. If M = 1 then d.f. =
1.

For the tau-overlap estimator, one applies the above in-
puts and time-bandwidth assumption after setting 7o = 7
(son = 1) and M = m, the number of second 7-increment
samples overlapped by 7.

The recipes consist mainly of piecewise-defined for-
mulas. Pseudocode for them is given in Fig. 2. On re-
quest, the author will supply a more readable copy of the
pseudocode with explanatory notes, plus a disk contain-
ing Fortran 77 and Basic code for recipe subroutines and
demo driver programs.
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white phase
............. flicker phase, 2nf,r = 100

------- white frequency
——= flicker frequency
—--- random walk frequency

r(x)/r(0)

0 5 1 1.5 2 2.5 3
x = t/T

Fig. 1. Autocorrelation functions of the second 7-increment of phase.

IV. NUMERICAL RESULTS

Table I gives the outputs of these recipes for the same
values of N and n as Stein’s Table 12-5 [9], which was
based partly on the formulas of Howe ez al. [6] (note that
Stein’s m corresponds to our n). Several rows have been
added to give d.f. values for certain small values of M /n
so that users of the recipes can check their implementa-
tions. Most of the d.f. results of the two tables agree
within a few percent. For white phase, there is complete
agreement, except that the top left entry of Stein’s table
may be a misprint. For flicker phase, the differences be-
come significant (almost a factor of 2) for the larger 7.
There may be a difference between the mathematical
models; while no value of 2xf, 7, is specified in Stein’s
table, Table I arbitrarily assumes a value of 10. For white
frequency, the tables differ by less than 2%. For flicker
frequency and random walk frequency, the differences are
less than 8%. In the case of random walk frequency, the
differences appear to be caused, at least partly, by the as-
sumption of a discrete-time random walk model, in which
the second 7¢-increments of phase are uncorrelated. In the
continuous-time model used here, successive samples of
these increments have correlation 1/4.

In summary, except for the flicker phase model, the
d.f. values produced by the recipes do not differ radically
from values computed in the past. The main contribution
of these recipes is the refinement of the values to a 2%
level of agreement with theory for all N and 7.

V. CONCLUDING REMARKS

The author has constructed a set of recipes for comput-
ing the degrees of freedom of the maximal-overlap and
tau-overlap estimators of Allan variance of the five com-
ponents of the classical clock noise model. Where ap-
proximations have been used, the errors of the results are
less than 1% except for flicker phase noise, in which case
some of the errors reach 2%. The results agree with val-
ues read from Fig. 2 of Yoshimura [10]; thus the recipes
represent those graphs and extend them to any number of
samples N, averaging time 7, and cutoff frequency f;, sub-
jectto 2@fg >> 1.
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Define x, = max(x,0).

if M = 1 then d.f. = 1.
Let p = M/n.

Therefore, assume M > 2.

WHITE PHASE
Fot = 1+ 301 - 1/p), + {51 - 2/m),
M

d.f. = =3

FLICKER PHASE

L=+ log(zrfh nro) t vy = 0.5772...
ko = 6, k' = -4, k2 =1
a0 = 2 log 2, a, = -4 log 2 + log 3, a, = 8 log 2
- 4 log 3
For i = 0 to 2
ry® k]L -y
q; = ki tog n - a;
Next 1
If n = t then
- 2 2 2
Fct = 1 + = r’(1 - 1/M) + r2(1 - 2/“)*
r
0
= M
d.f. = Fot

Else
Evaluate #(p) by the recipe below.

{ 9(p) = rg Fac

Denom = ®(p) +

=1

2 2
[ro - (qD + 2k°)

ko
+ e + ko/2)

2 my, [ - ey s 2kt
22, |- e, ¢ 2,)?
prl
da.f. = Denom
Endif
#(p) Recipe

1f p € .5 then
®(p) = p(36(log 0)2 - 91.36 log p + 102.97]

+ 93(7‘36 log p - 2.82)
Else if p < 1 then
#(p) = 39.50 + 187.75 p - 216.88 p° + 92,08 p°
Else if p ¢ 2 then
#(p) = 77.513 - 78.144 p + 183.382 p°
- 97.153 p° + 16.794 p*
Else
#(p) = 2057 - 102:84
Endif

WHITE FREQUENCY

If n =t then
Fctvn = % - 2% i Fetvn = Fet/n

Eise
If p < 1 then

Fctvn = p(t - p + gpz) + —%(1 - %p)
n

Else if p ¢ 2 then

4
_2_ 1. (@2-p)
Fetvn = 3 3 + ~2ap
1 1 1
+ ;5(1 3P 35)

Eise

1

* 5

= 2. 18
Fctvn = 3 T n2(6 )

Endif
Endif
d.f. = pb
Fctvn
FLICKER FREQUENCY
If n =1 then
Fetvn = 1.1354 -
Else if n = 2 then
Fctvn = 0.7743 -

0.1879

M ! not for M = 1

+0.0799(1 - 22)

0.1607
[ 2p'+

2
4+ 0.0251(1 - E)*

Else
pefine r(p) = sz log p - 4]9—1]2 logjp-1|
- a(p+1)? Tog(pt1) + |p-2]% log|e-2|
+ (9+2)% log(p+2) ¢ 0% Tog 0 = 0
Evaluate Fac by the recipe below.

2
Fctvn:Fac+L2-3— 1"—,,—(”—)
6n"p ro(0)
Endif

__b
d.f. = Fctvn

Fac Recipe
If p < .5 then

3
Fac = p + 7155 gg 5 (log p - 1.58)
Else if p < 2 then

Fac = -0.0581 + 1.4547 p - 1.3602 p
+ 0.6176 p° - 0.1054 p*

2

Else
2
= T 0.3911 0.02

24(10g 2)° P p

Endif

RANDOM WALK FREQUENCY
If n = 1 then

Fctvn = s_ L

8 8l

x|

Eise
Evaluate ri{p) and Fac from the recipes below.

2

1 r(p)

Fctvn:Fac+T 1 - =
6n“p [ r2(0)}

Endif

- P
d&.f. = Fctvn
r{p) Recipe
If p < 1 then
rip) = 4 ~ 692 + 3p
Else if p < 2 then
rp) = 2 - p)°

3

r(p) = 0

Fac Recipe

If p < 1 then

Fac = p(1 - 12

i
Else 1f p < 2 then
302 - 103/p , (2 - p)°

33

,34_35, 96
Pt 20f

2P * aas® )

Fac =

302 - 103/p
- 280

Fig. 2. Pseudocode for d.f. recipes. Comments are prefixed by exclama-
tion points.

Some remarks on the limitations of this approach to the
assignment of Allan variance confidence intervals are ap-
propriate. The above computations apply only to pure
power-law noises. Many phase noise records are better
fitted by an additive mixture of two or more of these. The
estimated log-log Allan deviation g-7 curve often shows
a transition between two straight-line regions, one for
small 7 and one for large 7. There is no guide on how to

proceed near the crossover. Moreover, one’s estimate of
the slope of the large-7 part of the curve (for 7 greater
than 1/20th of the data duration, say) is often unreliable
because of the large variance of the estimates &g(r), heavy
correlations between values of &3(7’) for nearby values of
7, and biases from drift or drift removal. The choice of a
model on which to base confidence intervals is often un-
clear.
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TABLE 1
DEGREES OF FREEDOM OF THE MAXIMAL ESTIMATOR OF aﬁ(‘r), WHERE N = NUMBER OF PHASE SAMPLES
SPACED BY 7o, n = 7/To, M = N — 2n = NUMBER OF SAMPLES OF SECOND 7-INCREMENT OF PHASE; FOR
FLICKER PHASE, 27f, 7o = 10

White Flicker White Flicker Random Walk

N n M Phase Phase Frequency Frequency Frequency
9 1 7 3.885 4.180 4.900 6.315 6.323
2 5 3.237 3.370 3.448 3.347 2.637

3 3 3.000 2.845 2.250 1.750 1.369

4 1 1.000 1.000 1.000 1.000 1.000

129 1 127 65.580 71.157 84.889 112.001 112.988
2 125 64.819 68.586 71.922 71.510 58.229

4 121 63.305 59.174 42.763 35.865 28.357

8 113 60.310 45.064 21.535 17.048 13.418

16 97 54.510 29.844 9.860 7.654 5.955

32 65 44.762 16.766 4.036 3.039 2.263

36 57 42.938 15.069 3.461 2.536 1.871

46 37 37.000 11.396 2.280 1.579 1.271

56 17 17.000 5.612 1.366 1.101 1.042

64 1 1.000 1.000 1.000 1.000 1.000

1025 1 1023 526.379 571.378 682.222 901.150 909.432
2 1021 525.615 556.432 583.919 581.004 473.592

4 1017 524.089 490.132 354.406 297.572 236.036

8 1009 521.039 389.458 186.293 147.890 117.252

16 993 514.953 281.917 93.392 73.048 57.859

32 961 502.840 187.972 45.753 35.628 28.163

64 897 478.886 115.944 21.794 16.925 13.319

128 769 432.510 65.269 9.829 7.592 5.905

256 513 354.914 32.524 4.005 3.010 2.239

290 445 339.795 28.586 3.404 2.481 1.829

370 285 285.000 20.534 2.211 1.539 1.250

450 125 125.000 9.780 1.331 1.086 1.036

512 1 1.000 1.000 1.000 1.000 1.000

Percival [16] has argued for the use of direct spectral
estimation on phase-noise time series. If the spectral den-
sity of phase S, ( f) is estimated, then nonparametric es-
timates both of oi(-r) and of the variance of conventional
time-domain estimators of ai(‘r) can be computed from
the spectral estimate S, (f). Properties of such estimators
remain to be investigated. Moreover, one must take care
to assure that estimates of spectral density for low Fourier
frequencies f do not suffer from all the same difficulties
as time-domain estimates of Allan variance for large 7.
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