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A Derivation of the Long-Term Degradation of
a Pulsed Atomic Frequency Standard from a

Control-Loop Model
Charles A. Greenhall, Member, IEEE

Abstract—The phase of a frequency standard that uses
periodic interrogation and control of a local oscillator (LO)
is degraded by a long-term random-walk component in-
duced by downconversion of LO noise into the loop pass-
band. The Dick formula for the noise level of this degrada-
tion is derived from an explicit solution of an LO control-
loop model.

I. Introduction

In 1987, following a suggestion of L. Cutler, Dick [1] de-
scribed a source of long-term instability for a class of

passive frequency standards that includes ion traps and
atomic fountains. In these standards, the frequency of a lo-
cal oscillator (LO) is controlled by a feedback loop whose
detection and control operations are periodic with some
period Tc. For each cycle, the output of the detector is a
weighted average of the LO frequency error over the cy-
cle. The weighting function g(t), derived from quantum-
mechanical calculations not addressed here, depends on
the method by which the atoms are interrogated by the
radio-frequency field generated by upconversion of the LO
signal to the atomic transition frequency [1]–[4]. In gen-
eral, g(t) can be zero over a considerable portion of the
cycle. The level of the LO control signal over a cycle is a
function of the detector outputs from previous cycles.

A frequency-control loop works by attenuating the fre-
quency fluctuations of the LO inside the loop passband
(long-term fluctuations), while tolerating them outside the
passband (short-term fluctuations). As Dick saw, though,
the periodic interrogation causes out-of-band LO noise
power, near the cycle frequency fc = 1/Tc and its har-
monics, to be downconverted into the loop passband, thus
injecting random false information about the current av-
erage LO frequency into the control signal. This random
false frequency correction causes a component of white fre-
quency modulation (FM), or random walk of phase, to per-
sist in the output of the locked LO (LLO) over the long
term. Dick gave the formula

Sy (0) = 2
∞∑
k=1

g2
k

g2
0
SLO
y (kfc) (1)
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for the white-FM noise level contributed by this effect.
Here, SLO

y (f) is the spectral density of the normalized
frequency departure of the free-running LO, and gk is the
Fourier coefficient

gk =
1
Tc

∫ Tc

0
g (t) cos (2πkfct) dt, (2)

where g (t) is assumed to be symmetric about Tc/2. This
level of white FM near Fourier frequency zero contributes
an asymptotic component of Allan variance given by

σ2
y(τ) ∼

Sy (0)
2τ

(fcτ →∞).

The purpose of the present paper is to supplement pre-
vious derivations [1]–[3], [5] of the Dick formula (1) by
an approach that uses an explicit time-domain solution of
a simple LO control loop model with a general detection
weighting function g(t). Careful interpretation of this solu-
tion yields a formula for the LLO frequency spectrum, and
conditions for the validity of the Dick formula. The model
treated below is not intended as a realistic representation
of an actual frequency standard; the goal is to improve un-
derstanding of the Dick effect by exhibiting its presence in
a model with minimal features. Similar models have been
treated by Audoin et al. [6], who use an equivalent time-
domain solution method, and by Lo Presti et al. [5], [7],
who use a Fourier transform method. The Lo Presti model
also has been treated by the time-domain method [8].

II. Control-Loop Model

Fig. 1 shows the chosen model for an LO control loop,
containing both analog and digital elements. All signals are
scaled as normalized frequency departure from the ideal
frequency determined by the atomic transition. The fre-
quency noise contributed by the free-running local oscilla-
tor is yLO(t). The output LLO frequency is y(t). The error
signal

1
Tcg0

∫ Tc

0
g (u) y ((n− 1)Tc + u) du (3)

from the interrogation of y(t) during the nth cycle
(n− 1)Tc < t < nTc is implemented in Fig. 1 by a linear
time-invariant filter G with the normalized time-reversed
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Fig. 1. A feedback-loop model for a local oscillator with periodic
interrogation and control. The impulse response of the filter G is
a normalized, time-reversed version of the interrogation sensitivity
function g (t).

impulse-response function

g−1 (t) =
g(Tc − t)
Tcg0

, 0 < t < Tc

= 0 otherwise

and transfer function

G (f) =
∫ Tc

0
g−1 (t) e−i2πft dt.

The symmetry assumption about g (t) has been dropped.
The filter output

Gy (t) =
∫ Tc

0
g−1 (u) y (t− u) du,

sampled at time t = nTc, is exactly (3). The detection
noise term vn can represent photon-count fluctuations in
frequency standards with optical detection, for example.
The cumulative sum of the error signals, multiplied by a
gain factor λ, is the frequency correction yn, which is ap-
plied to the LO during the next cycle nTc < t < (n+ 1)Tc.
Except for initial conditions, the following two equations
define the closed-loop model completely:

yn = yn−1 + λ (Gy (nTc) + vn) , (4)
y (t) = yLO (t)− yn−1, (n− 1)Tc < t < nTc,

(5)

in which it is convenient to suppose that n runs through
all integers. This system has two inputs, yLO (t) and vn,
and one output, y (t).

III. The LLO Frequency

The mixed analog-digital system (4), (5) can be solved
by eliminating y (t) to get an equation in yn alone. From
(5) we have Gy (nTc) = GyLO (nTc)− yn−1, which, substi-
tuted into (4), gives the first-order difference equation:

yn = (1− λ) yn−1 + λwn, (6)

where

wn = GyLO (nTc) + vn. (7)

Assume 0 < λ < 1. Then the general solution of (6) is

yn =
∞∑
j=0

λ (1− λ)j wn−j + C (1− λ)n . (8)

From now on we shall ignore the transient part of this
solution by setting C = 0.

Let us express yn directly as a function of the inputs
yLO(t) and vn. Define the discrete-time lowpass filter Hd

with weights

hj = λ (1− λ)j , j ≥ 0,

which sum to 1, and transfer function

Hd (z) =
∞∑
j=0

hjz
−j =

λ

1− (1− λ) z−1 , (9)

where, from now on, z = ei2πfTc . Substituting (7) into (8)
gives

yn =
∫ ∞

0
hc (t) yLO (nTc − t) dt+Hdvn,

= HcyLO (nTc) +Hdvn,

(10)

in which we have introduced a causal continuous-time filter
Hc with impulse response

hc (t) =
∞∑
j=0

hjg
−
1 (t− jTc)

consisting of repetitions of g−1 (t) with exponentially de-
creasing amplitudes. Notice that

∫∞
0 hc (t) dt = 1. Its

transfer function

Hc (f) =
∫ ∞

0
hc (t) e−i2πftdt

satisfies

Hc (f) = Hd (z)G (f) . (11)

Substituting (10) into (5) gives an explicit piecewise solu-
tion for the LLO frequency:

y (t) = yLO (t)−HcyLO ((n− 1)Tc)−Hdvn−1,

(n− 1)Tc < t < nTc. (12)
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IV. The LLO Frequency Spectrum

Although (12) gives an explicit formula for the out-
put frequency, its interpretation requires careful handling.
Under reasonable assumptions (see below) on yLO (t) and
vn as random processes, we cannot expect the piecewise-
defined process y (t) to be stationary, or even to have sta-
tionary nth increments for some n. Thus, the author does
not know how to assign a spectral density to it. To get
around this problem, it is convenient to study the samples
x (nTc) of the LLO time residual x (t) =

∫
y (t) dt. The

properties of these samples are determined in turn by the
properties of the average LLO frequencies

Ay (nTc) =
1
Tc

∫ nTc

(n−1)Tc
y (t) dt

=
x (nTc)− x ((n− 1)Tc)

Tc

where A is the moving-average filter whose action on a
signal ξ (t) is

Aξ (t) =
1
Tc

∫ Tc

0
ξ (t− u) du.

Its transfer function is

A (f) =
1− z−1

i2πfTc
.

Applying A to (12) gives

Ay (nTc) = AyLO (nTc)
−HcyLO ((n− 1)Tc)−Hdvn−1. (13)

We are now going to derive the spectrum of the discrete-
time process Ay (nTc) defined by (13). To this end, con-
sider the auxiliary process defined by

Y (t) = AyLO (t)−HcyLO (t− Tc) ,

which is obtained from yLO (t) by a linear time-invariant
filter B with transfer function

B (f) = A (f)− z−1Hd (f)G (f) . (14)

Assume that yLO (t) is a mean-continuous random process
with stationary first increments and a two-sided (even)
spectral density SLO

y (f), which necessarily satisfies∫ fc

0
SLO
y (f) f2df <∞,

∫ ∞
fc

SLO
y (f) df <∞

(15)

[9]. The first condition in (15) allows any power law spec-
trum |f |α for α > −3; linear combinations of such spectra
constitute the spectra that are customarily attributed to
oscillators. For α ≥ −1, the second condition in (15) re-
quires a high-frequency rolloff of the |f |α behavior.

The assumption (15) makes the process Y (t) station-
ary: because A (f), Hd (z), and G (f) are all 1 + O (f) as

f → 0, we see from (14) that B (f) = O (f). Thus |B (f)|2
attenuates any low-frequency divergence of SLO

y (f) al-
lowed by (15), leaving an integrable two-sided spectral
density

SY (f) =
∣∣A (f)− z−1Hd (z)G (f)

∣∣2 SLO
y (f) .

(16)

The first two terms of the right side of (13) are just the
samples Y (nTc), which constitute a discrete-time station-
ary process whose two-sided spectral density is

∞∑
k=−∞

SY (f + kfc) , |f | ≤ fc/2.

The terms with k 6= 0 account for the Dick effect. Let the
detection noise process vn be independent of yLO (t) and
stationary, with two-sided spectral density Sv (f). Then
the process Ay (nTc) given by (13) is a stationary discrete-
time process with two-sided spectral density

SAy (f) = S0
Ay (f) + S1

Ay (f) , |f | ≤ fc/2,

where

S0
Ay (f) =

∣∣A (f)− z−1Hd (z)G (f)
∣∣2 SLO

y (f)

+ |Hd (z)|2 Sv (f) , (17)

the main part, so to speak, and

S1
Ay (f) =

∑
k 6=0

∣∣∣∣ 1− z−1

i2π (fTc + k)
− z−1Hd (z)G (f + kfc)

∣∣∣∣2
× SLO

y (f + kfc) , (18)

the aliased part, where the sum includes both positive and
negative k.

An example of these frequency spectra is shown in
Fig. 2, in which Tc = 1 s, SLO

y (f) = |f |−1 (flicker FM)1,
g (t) = 1 for Tc/2 < t < Tc and 0 otherwise, and λ = 1/10.
Detection noise is omitted. The spectra are plotted up to
frequency fc/2. Harmonics through order 5 are used to
approximate the series in (18). Despite the attenuation of
the main part of the LLO spectrum from the LO spectrum
below the loop bandwidth, the white-FM contribution of
the aliased part is dominant only for frequencies below
10−4fc. The bandwidth of the aliased white-FM noise is
approximately the same as the loop bandwidth.

V. The Dick Formula

In general, the aliased part (18) of the LLO frequency
spectrum introduces a long-term white-FM spectral com-
ponent if (18) is continuous and positive at f = 0. Rea-
sonable mathematical conditions on the weighting function
and LO frequency spectrum will guarantee the continuity

1Violation of the second condition in (15) does not really matter.
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Fig. 2. Frequency spectra for a simple example with flicker-FM local-
oscillator noise and a 1-second cycle. The aliased spectrum at low
frequencies is responsible for the Dick effect.

of the aliased spectrum. For example, if g (t) is square-
integrable for 0 < t < Tc, and SLO

y (f) is continuous and
bounded for |f | ≥ fc/2, then it can be proved that the
right side of (18) is a uniformly convergent series of con-
tinuous functions on |f | ≤ fc/2. Consequently, the sum of
the series is a continuous function. Letting f = 0 in (18)
gives

S1
Ay (0) = 2

∞∑
k=1

∣∣∣G (kfc)
2
∣∣∣SLO

y (kfc) . (19)

For the example of Fig. 2, S1
Ay (0) =

(
8/π2

)∑∞
j=0(2j +

1)−3 = 0.853. The formula (19) holds for one-sided spec-
tral densities also. Finally, if g (t) is symmetric about Tc/2,
then G (kfc) = gk/g0. Thus (19) reduces to the Dick for-
mula (1).

VI. Remarks

The Dick effect can be hidden by the main part (17)
of the LLO spectrum. If the detection noise vn is white,
then the term |Hd (z)|2 Sv (f) competes directly with the
Dick effect as another white-FM noise at low frequen-
cies. The basic action of the control loop operates on
the LO frequency by a filter with frequency response

∣∣A (f)− z−1Hc (z)
∣∣2 , which, as we observed, is O

(
f2
)

as
f → 0. Thus, the filter adds 2 to the exponent of any
low-frequency power law that SLO

y (f) obeys. If SLO
y (f) is

more divergent than f−2 (random walk FM), then S0
Ay (f)

is unbounded near f = 0, hence masks the Dick effect.
Random walk FM in the LO is transformed to another
white FM component in the LLO. Anything less divergent,
like flicker FM, is transformed to an LLO spectral density
that tends to zero at low frequencies. In this case, the
Dick effect and the detection noise predominate in the long
term.
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