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A Method for Using a Time Interval Counter to
Measure Frequency Stability

CHARLES A. GREENHALL

Abstract—An interval timer can be used in a single-mixer frequency-
stability measurement system in place of an event timer. The dead-time
problem is avoided with the aid of a reference pulse train and an al-
gorithm for ambiguity resolution.

I. SINGLE-MIixER METHOD

N THE beat-frequency or single-mixer method of fre-

quency-stability measurement, two sources at frequen-
cies fy and fy + f, are mixed down to a sinusoidal beat
note at frequency f,, which typically is around 1 Hz. This
sine wave is passed through a zero-crossing detector to
obtain a square wave at the same frequency. The relative
time deviation or fractional frequency deviation of the two
sources equals f}, /f, times that of the square wave or, more
precisely, its stream of upcrossings, which are spaced ap-
proximately 1 /f, apart. .

For the direct measurement of the two-sample (Allan
variance of a sequence of events such as the beat-note
upcrossings, one must be able to capture adjacent periods,
or, to put it more simply, one must be able to measure the
epoch of each event with none skipped. In prior art [1],
[2], this has been accomplished by event timers with res-
olution from 0.1 us to 1 us that can latch each event on
the fly for subsequent computer processing.

II. THE Picker FENCE

The event timers used in the system mentioned previ-
ously were custom-built. On the other hand, commercial
time interval counters with nanosecond resolution, IEEE-
488 interfaces, and moderate cost are readily available.
Of course, any such counter has dead time between mea-
surements; unaided, it can measure at most every other
period of a stream of events. If these devices are to be
used in a frequency-stability measurement system, this
limitation must be overcome, if possible without resorting
to methods such as bias functions [3]-[5] for making
model-dependent adjustments to the results. One method
for capturing each period is to use two counters per beat-
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Fig. 1. Picket fence setup for measuring the stability of square wave.

note channel in alternation, one counter measuring the
even periods, the other measuring the odd periods [6].
The method to be explained here uses only one two-input
counter per channel, but does require the use of one other
component, a divider or pulse generator that provides a
10-pps (pulses per second) reference signal, called the
picket fence, which constitutes a reference grid in time
relative to which the epochs of the beat-note upcrossings
are determined as shown below.

‘The apparatus now used at Jet Propulsion Laboratory
for processing a beat-note square wave of frequency be-
low 2 Hz is shown in Fig. 1. The beat note and the picket
fence signal go to inputs A and B of the counter. The same
frequency standard drives both the counter and the divider
to keep the picket fence coherent with the counter. In a
multichannel system, each beat note has its own counter,
and the same picket fence signal goes to all the B inputs.

To carry out a test, one first uses the ‘‘Period 4’ func-
tion of the counter to make a preliminary measurement of
the period p of the beat note. Noise in this measurement
does not influence the final results. Having measured the
nominal period, one switches the counter to its *“Time
Interval A-B’’ function, and records all subsequent read-
ings, starting on 4 and stopping on B. Each reading is the
time interval between a upcrossing and the next picket
fence pulse. Provided that the periods are not too short,
the counter has time to reset itself between readings, and
hence no upcrossing is missed. From these raw data, the
actual upcrossing epochs are recovered in software by an
algorithm given below. The time evolution of the mea-
surement process is shown schematically in Fig. 2.

ITII. THE UNFOLDING ALGORITHM

Let d be the picket fence period (100 ms), p the initial
beat period measurement, and vy, vy, v,, * - - the time
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Fig. 2. Picket fence measurement process.

interval data corresponding to the unknown upcrossing
epochs ty, 1}, t,, * * * relative to some arbitrary time origin
(Fig. 2). Each ¢, differs from the known quantity u, = d
— v, by an unknown integer multiple of d (notation: ¢,
= u, (mod d)); we wish to resolve these ambiguities.
The method for doing so depends on the regularity of the
beat note that holds typically in an experimental situation,
namely, that each period does not differ too much from
some average of recent periods, although long-term
changes may be great. To make this precise, let A denote
the backward difference operator, e.g., At, = ¢, — t,_,.

Assumptions

1) Each period At, is greater than d + g, where g is
the maximum dead time of the counter: This guarantees
that no upcrossing is missed.

2) Define the sequence py, py, ps, * * * by po = p, Pa
= (1 = N)p,—; + NAt, for some constant A in [0, 1].
Thus, the p, sequence is the output of a filter applied to
the Az, sequence. It is assumed that Az, differs from p,_,
by less than d /2. The choice of \ is discussed below.

Since the #, increase linearly without limit and may con-
tain important information in their least significant digits,
they are awkward to compute, store, and use. Accord-
ingly, the algorithm given below actually computes the
sequence of raw time residuals x, defined by

n=0,1,2,---, (1)

which can be used directly in the computation of two-
sample variance, for example. In order to recast assump-
tion 2 in terms of the x,, let g, = p, — p. Then the g,
satisfy

Xp =1, — Ip — np,

9o = 0, qn = (1 - )‘)qn—l + )\Axm (2)
and assumption 2 is equivalent to the assertion
|Axn - qn—l| < d/2 (3)

An essential ingredient of the algorithm is the signed
residue function S mod (x, d), which is defined to be
equal to x minus the closest integer multiple of 4 to x. For
example, Smod (3, 5) = Smod (-7, 5) = —2. Ifx is

halfway between two integer multiples of d, then it doesn’t
matter whether S mod (x, d) takes the value d/2 or
—d /2. This function has two essential properties: 1) if x
= y (mod d) then S mod (x, d) = Smod (y, d); 2) if
|x| < d/2 then S mod (x, d) = x. These properties im-
ply the following simple result.

Lemma: Let A, B, and C satisfy
A= B(modd), |4-C|<d/2.
Then
A=C+Smod(B-C,d).

Proof: By properties (1) and (2), Smod (B ~ C, d)
=Smod(4 —C,d) = A — C, as asserted.

The idea here is that C, which is close to A, is used to
resolve the ambiguity between A and B. Recall now that
t, = u,(mod d). Hence, by (1), Ax, = Au, — p(mod
d). With4 = Ax,, B = Au, — p, C = g,_;, (3) and the
lemma give

Ax, = qu—1 t S mod (Aun —P — qn-1s d) (4)

An algorithm for the sequential computation of x,, can now
be given.

Unfolding Algorithm
1) Measure vy, let gg = 0, x5 = 0.
2) Forn =1, 2, - - - perform the following steps:
3) Measure v,,.
4) Letz = Smod (v,_; —
5) Xp = Xp-1 + dn-1 + Z,
6) dn = qn-1 + )\Z'

Up =P ~ Gun-y d),

Choice of \: The only restrictionon A is 0 < \ < 1.
If N is set to O, then all the p, equal p, all the g, equal O,
and we are assuming that the beat periods always stay
within d /2 (50 ms) of the initial period p. This does not
allow the algorithm to follow large, slow changes in Az,.
If N\ is set to 1, then p, = At,, g, = Ax,, and we are
assuming that each beat period is within d/2 of the pre-
vious period. This allows large, slow changes to be fol- -
lowed, but makes the algorithm vulnerable to large errors
in the data: in a previous version of this paper [7], it was
shown that a single error could cause subsequent period
calculations to be off by d. It is suggested that \ be set to
a small positive value such as 0.01. This gives g, enough
damping to protect against errors and missing data, and
allows the algorithm to follow a constant drift rate A%,
nearly as large as Ad /2 (depending on the amount of noise
in the data). Criteria for optimizing A have not been de-
veloped.

IV. Noise FLoorR TEST

To measure the noise floor and test the integrity of the
digital portion of the measurement system, a square wave
of period (10 — r)d, where r = (V5 — 1) /2, the Golden
Ratio, was used in place of a beat note. This particular
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period was used instead of 10d = 1 s in order to get a
good mix of counter readings v, [8, pp. 510-11, 543].
The same frequency reference was used for the counter,
picket fence, and input signal. In a 108 600-s test, the
time residuals (with the mean frequency removed) stayed
within 6 ns peak-to-peak, with no tendency to accumulate
as a random walk, and a two-sample deviation (relative
to 1.066 Hz) of 1.3 x 107°/7 was observed. This shows
that all the equipment maintained coherence at the nano-
second level and that the algorithm performed correctly.

V. CONCLUSION

We have shown that an interval counter, aided by a
picket-fence reference signal and an algorithm for ambi-
guity resolution, can emulate an event timer in a single-
mixer frequency-stability measurement system. Advan-
tages of the technique are high precision, convenient in-
terfacing, and low cost. A disadvantage is the vulnerabil-
ity of the technique to missing data. In fact, if the beat
period is sufficiently close to an integer multiple of 4, then
a missing upcrossing is invisible to the algorithm. On the
other hand, if the offset between the sources under test
can be adjusted so that the beat period differs significantly
from an integer multiple of d, as in the noise floor test
described above, then missing data will stand out clearly
as large jumps in x,, and it may be possible to repair the
x, after they have been collected.
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