870

IT (1 -afq™)
1=0

x(n — 2N + 1)

N-1
IT (1-afq™")
=0

where the ith row of G, corresponds to the coefficients of the poly-
Y201 — W27 (1 — 4fz "), and the
k#i

ith row of G, corresponds to the coefficients of the polynomial
G,

127'D;(z™"). Thus
)= {o

and its determinant is given by (5) which is nonzero if 4; # 4, for
alli # k. Since II')' (1 —afq™") =1+ L., §,¢” whichisa
stable polynomial with real coefficients, by [14, lemma 4.7], the
matrix in the middle is nonsingular if {x(n)} is persistently ex-
citing of order 2N. This completes the proof.

nomial 1D;(z ") =

\73%

ot (A8)

rol—
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Orthogonal Sets of Data Windows Constructed from
Trigonometric Polynomials

CHARLES A. GREENHALL

d

Abstract—This corresp e gives suboptimal, easily computable
substitutes for the discrete prolate spheroidal windows used by Thom-
son for spectral estimation. Trigonometric coefficients and energy leak-
ages of the window polynomials are tabulated.

In the Thomson method [1] for estimating the power spectrum
of a stationary time series from N values x[0], - - - , x[N — 1],
a frequency band [ fy — W, fy + W] is chosen, and an estimate for
the spectral density S( fy) is computed as an average of windowed
periodogram values, namely

MOTIVATION

K-1
S =% 2 D) )
where
N-1
wl(f) = ,E()X["]Uk[m N, W]e 2, (2)

The window sequences vy, * - * , vy_ are the discrete prolate
spheroidal sequences (DPSS) of Slepian [2]. They are orthonormal
and are leakage optimal over the space of scquences index-limited
to 0, - - - , N — 1, in the sense that 1) v has the smallest leakage
of all nonzero elements; 2) for k > 0, v; has the smallest leakage
of all nonzero elements orthogonal to vy, - * -, v4_,. In this con-
text, the leakage L( g, W) of a function g of discrete or continuous
time is defined as the fraction of its total energy contained in fre-
quencies outside [ =W, W]. The leakage L (v, W) increases with
k and decreases with W. By virtue of the orthogonality of the v,
the estimate (1) has approximately 2K degrees of freedom if x is
Gaussian, S( f) is nearly constant for | f — fy| < W, and the leak-
age of vx _ is small. Thus, by adjusting W and K., one can achieve
a tradeoff in (1) among variance, resolution, and the influence of
frequencies outside [ fy — W, fy + W1

Since the DPSS are somewhat difficult to compute, the design
of easily computable suboptimal substitutes for them may be of
value. In view of Nuttall’s constructions of windows from cosine
polynomials of low degree [3], one might expect trigonometric poly-
nomials with both sines and cosines to make attractive materials
for construction of DPSS substitutes. In fact, this idea has already
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been realized by Bronez [4, p. 1869] in his recent extension of the
Thomson method to the more general situation of unevenly spaced
and multidimensional data. The coefficients of his polynomials and
their leakages are, respectively, the eigenvectors and eigenvalues
of a certain matrix whose coefficients depend on N, the number of
data. The aim of this note is to simplify the situation further for
evenly spaced one-dimensional data by deriving the coefficients and
leakages of an orthonormal set of continuous-time trigonometric
polynomials that do not depend on N. They are converted to dis-
crete-time data windows by sampling them at N properly chosen
points.

II. ConTiNuoUs-TIME WINDOWS

We shall always use w to denote bandwidth in terms of the fun-
damental frequency unit, which is 1 /N for windows on 0, - - - |
N — 1, and 1 for windows on ( —1/2, 1 /2), as constructed below.
It will be assumed that w is an integer (for the author’s convenience
only). Consider a time-limited trigonometric polynomial

M
o(x) = 2 c[v] e™™, [x] < 1/2
v=—M
=0, (x| = 1/2
of degree < M. Its Fourier transform is
M
®(y) = 2 c[r]s(y—») (3)
where
sin 7y
s(y) =—. (4)
Ty

The polynomials we seek can be defined immediately: their coef-
ficient arrays are normalized eigenvectors of the positive-definite
matrix

At = |

and their leakages are the eigenvalues. Denote the resulting poly-
nomials by ¢, (x; w, M), k = 0 to 2M, and their coefficients by
¢ [v], v = —Mto M, where the leakages L(¢,, w) are taken in
increasing order. These polynomials, which are orthonormal and
leakage optimal over the space of polynomials of degree less than
or equal to M, will be called trig prolates, because they can be
regarded as finite-dimensional analogs of the prolate spheroidal
wave functions (PSWF) (Slepian [5]). The symmetry of 4 about its
reverse diagonal forces the eigenfunctions to be either even or odd
(the odd ones are muitiplied by +i to make them real), and we find
empirically that the above indexing gives ¢, the parity of k. We
remark that the trig prolates share with the PSWF the property of
double orthogonality: their transforms &, ( y; w, M) are orthogonal
over { —w, w] as well as ( —o0, o).

The entries of A were computed as linear combinations of the

integrals
| . 2 |
sin v
S “7“' d. S
olw(n +v)| 0

n=0tow+ M- 1
which were computed by Romberg quadrature. The eigenvalues
and eigenvectors were computed by EISPACK routines [6], {7].
Although the leakages decrease if M increases. setting M = w gives
adequate performance, as shown below.

Table I gives the coefficients and leakages of the trig prolates
forw = 21t0o5, M = w, and for all k such that L(¢,, w) < 0.01.
Fig. 1 shows the frequency response | &, ( y; 4, 4)|* for k = 0 and
4. Comparing these with Thomson’s graphs of the frequency re-
sponses of the DPSS for large N [1, fig. 2], we see that the maxi-
mum sidelobes of the trig prolates are at most 2.5 dB above those

s(y —i)s(y —j) dy, i,j=-MtoM

x>

D
sin® 7y

— 1.
7 (n +y) @
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TABLE 1
SINE-COSINE COEFFICIENTS ¢y | ] AND LEAKAGE L (é;. w') FOR TRIG
PROLATE ¢, (i w, w) = a, }0] + 2 | a[v] cos 2wy (k EVEN), OR
28 alv] sin 2mvx (k OpD)

wz=M=2 w=M=3

k 0 1 k 0 2 3
L .BY01E-04 .3254E-02 L .2113£-06 .1520E-04 ,4394E-03 .6810E-02
v uk[‘»J v Ak[l/]
[ .8202108 0.0 0 . 7499700 0.0 .4969513 0.0
1 . 4041691 .7007932 1 .4596063 .6507499 -.3050683 .2731233
2 .0165649 .0942808 2 .0867984 .2765560 -.5312499 -.6397174

3 .0007513 .0064282 -.0350227 -.1271430

w=M=4d

k 1] 1 2 3 4
L .4376E-09 .4203tE-07 .1965E-05 .5382E-04 .9029E-03
v a (v]
0 .6996910 0.0 .4783016 0.0 -.3862293
1 .4830013 .5927723 -.1666510 . 3540569 3223025
2 .1473918 .3805986 -.5724443 -.4929565 -.0856254
3 .0141997 .0613650 -.1736202 -.3626279 -.5584413
4 .0000368 .0003328 -.0022015 -.0117722 -.0484379

w=M=35
k 0 1 2 3 1 5 6
L .1056E-11 .1148E-09 .6265E-08 .2307E-06 .6065E-05 .1112E-03 .1411E-02
v e lv)
0 .6632850 0.0 . 4560698 0.0 -.3821638 0.0 . 3246026
1 .4915713 .5401300 -.0704481 . 3866087 .2527019  -.2216043 -.2957322
2 .1927963 ~4383060 -.5519198 -,3363930 . 1138304 . 3885522 . 1964585
3 .0347859 . 1266343 -.2915206 -.4760267 -.5457777 -.3657298 . 0266965
4 .0019243 .0105462 -.0379143 -.1037856 -.2286313 -.4072901 -.3631039
5 .0000018 .0000191 -.0001319 -.0007467 -.0037712 -.016591u  -.0388589
a
©

-100 - k=0 -
-120 L J/\/\/\[\[\f\ N 1 1
o 2 4 6 8 10 12 14 16 18 20
FREQUENCY y

Fig. 1. Frequency response of trig prolate windows for bandwidth w = 4,
degree M = 4. The total energy for each window is 1.

of the corresponding DPSS, although the sidelobe structure of the
trig prolates is less regular.
II. DiscreTE-TIME WINDOWS

An orthogonal set of windows for dataon 0, - - - , N — 1 and
bandwidth W = w /N is constructed by sampling the ¢, as follows:

w[n; N, W, M]
_ n—(N-1)/2
—¢A< N
k=0t 2M. (5)

:uxM>, n=0toN -1,

Notice that the denominator is N instead of N — 1. This has two
beneficial effects: 1) the basis functions e”™* remain orthogonal
when so sampled: 2) their discrete-time transforms are more closely
related to their continuous-time transforms (see below).

The discrete-time windows u; will be called sampled trig pro-
lates. Orthogonality is preserved, namely, LYZg u;[n]u[n] =

NG&;; . Their discrete-time Fourier transforms are
M

Ul f N W.M) = "0 5 G]s(Nf = i N) - (6)
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TABLE 11
RATIO (DECIBELS) OF SAMPLED TRIG PROLATE LEAKAGE TO OPTIMAL DPSS
LEAKAGE. THE FIRST ENTRY 1S FOR N = 8, THE SECOND FORN = 16w
k 0 1 2 3 4 5 6
W
2 2.1, 1.9 1.2, .2
3 2.7, 2.0 2.4, 2.2 2.0, 1.9 1.3, 1.3
4 3.7, 1.8 2.8, 1.7 2.6, 2.1 2.4, 2.2 1.9, 1.9
5 5.4, 2.6 4.2, 2.1 3.3, 1.9 2.7, 2.0 2.6, 2.2 2.4, 2.2 1.9, 1.8
where
sin wy
s(ywN) = —— (7)
sin (wy/N)

(compare with (3) and (4)). A spectral estimate of Thomson type
is obtained by using (1/vN)u[n; N, W, M ] in place of v,[n; N,
W1in (1) and (2).

IV. ComPARISON WITH OPTIMAL WINDOWS

How much leakage performance is lost by the use of these sub-
optimal windows? Let L(¢;, w), L(u,, N, W), and 1 — N (N,
W), where NW = w = M, be, respectively, the leakages of the
trig prolates, the sampled trig prolates, and the optimal DPSS.
Evaluating L (u,) by means of the quadratic form in the numerator
of (32) of Bronez’s paper [3], we find that L (x,) is between O dB
and 1.2 dB less than L(¢;) for the instances of w and k given in
Table I and for N = 8w. For N = 16w, replace 1.2 dB by 0.6 dB.
Thus, the sampled trig prolates have slightly less leakage than the
trig prolates. Table II gives the ratio of sampled trig prolate leakage
to DPSS leakage, which was computed by solving the eigensystem
given by Thomson [1, eq. (2.9)]. For N = 8w, the leakages of the
sampled trig prolates are 1.2 to 5.4 dB greater than those of the
optimal DPSS; for N = 16w, the range is 1.2 to 2.6 dB. The leak-
ages of the corresponding Bronez discrete polynomial windows.
which form the leakage-optimal set of discrete-time trigonometric
polynomials of degree less than or equal to M, necessarily lie be-
tween those of the sampled trig prolates and those of the DPSS.

V. CONCLUSIONS

We have described several orthonormal systems of data win-
dows, the sampled trig prolates, which can be used in the Thomson
method of spectral estimation. For w = NW = 2to 5. and 8W not
greater than the Nyquist frequency (i.e., N = 16w), the user of
these windows pays a leakage penalty at most 2.6 dB for not using
the optimal DPSS windows. In return, one has only to evaluate the
trigonometric polynomials of degree w from Table I at N points
according to (5). In contrast, the evaluation of the DPSS windows
requires the solution of an N X N symmetric Toeplitz matrix ei-
gensystem. If N is large, one can proceed by solving a symmetric
J X J eigensystem obtained from the approximation of a certain
integral operator by Gaussian quadrature, in which the required
number of knots J depends on the details of floating-point hardware
and mathematical software [1, pp. 1090-1091]. The prospective
user of the Thomson method might regard the 2.6-dB penalty as an
acceptable price for avoiding these complexities.
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AR Model Identification With Unknown Process
Order

S. K. KATSIKAS. S. D. LIKOTHANASSIS, anp D. G. LAINIOTIS

Abstract—A new method for simultaneously selecting the order and
identifying the parameters of an AR model has been developed. The
consistency of the method has been proved for general (not necessarily
Gaussian) data pdf’s. As a by-product of the derivation of the consis-
tency of our method, the consistency of the PLS criterion is proven
elegantly and concisely. Simulation experiments indicate that the pro-
posed method is 100% successful in selecting the correct model order
and that it accurately identifies the model parameters. Furthermore,
it does so in very few steps. The algorithm can be parallely imple-
mented and also a VLSI implementation is feasible.

[. INTRODUCTION

The problem of fitting an autoregressive (AR) model to a given
time series is a fundamental one in linear prediction, system iden-
tification, and spectral analysis. Furthermore, it arises in a large
variety of applications, such as adaptive control, speech analysis
and synthesis, channel equalization, EEG and ECG analysis, geo-
physical data processing, etc.

The problem can be formally described as follows: given a set
of samples from a discrete time process {¥(k),0 < k <= N — 1},
it is desired to obtain the set of coefficients {a;} which yields the
best linear prediction of y(N ) based on all past samples:

[
SIN/N = 1) = 2 ay(N = D) (1

where $(N/N — 1) denotes the predicted value of ¥ (N ) based on
measurements up to and including y(N — 1). 0 is the order of the
predictor and the a;’s are the predictor coefficients.

Clearly, the problem is twofold: one has both to select the order
of the predictor and to compute the predictor coefficients. Perhaps
the most crucial part of the problem is the former. Many methods
exist for AR model order selection, the most well known and widely
used among them being the ones proposed by Akaike [1], [2], Par-
zen [3], Rissanen (4], Hannan and Quinn [5]. All these are based
on the assumption that the data are Gaussian and upon asymptotic
results. Hence, strictly speaking, their applicability is limited only

Manuscript received January 11, 1988: revised May 5, 1989.

S. K. Katsikas is with the Department of Computer Science. Techno-
logical Education Institute (T.E.1.) of Athens. Athens, Greece, and the
Computer Technology Institute, Patras 261 00, Greece.

S. D. Likothanassis is with the Computer Technology Institute, Patras
261 00, Greece, the Department of Computer Engineering, University of
Patras. Patras 265 00, Greece, and the Department of Electrical Engineer-
ing, Technological Education Institute (T.E.I.) of Patras, Patras, Greece.

D. G. Lainiotis is with the Computer Technology Institute, Patras 261
00, Greece, and the Department of Computer Engineering. University of
Patras, Patras 265 00, Greece.

IEEE Log Number 9034436.

0096-3518/90/0500-0872$01.00 © 1990 IEEE



