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Abstract

A drift-rate estimator constructed from four values of
the cumulative sum of clock residuals is shown to have
good error performance in the presence of the five stan-
dard power-law noises. A comparison table of sev-
eral drift estimators is given. The bias and variance
(or equivalent degrees of freedom) of a modified Al-
lan variance estimator incorporating drift removal is
calculated.

1 Introduction

The confidence of estimates of modified Allan variance
(mvar) can be derived from previously published for-
mulas and algorithms [1, 2, 3], but only for situations in
which mvar is not dominated by linear frequency drift.
For such a situation to hold, either the actual drift rate
must be negligible for a given span of clock data, or the
drift rate must be removed after being estimated from
a longer span of data or by another method, such as
hydrogen-maser cavity tuning. The present investiga-
tion has two goals: 1) design of a drift estimator with
satisfactory error performance in the presence of the
five standard power-law phase noise models; 2) find-
ing out how removal of drift, as estimated from the
current data, affects the bias and variance of the es-
timated mvar of the residuals, and thereby designing
an automatic procedure for assigning mvar confidence
intervals.

The first goal is achieved by a linear combination
of four values chosen from the sequence of cumulative
sums of the time residuals. The variance of the chosen
drift estimator, for the five standard noise models, is
compared to that of several other drift estimators. Ta-
ble 1 gives a concise presentation of their variances in

*Email; cgreen@pop.jplinasa.gov. This work was performed
at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and
Space Administration.

0-7803-3728-X/97/$10.00 © 1997 IEEE

a uniform notation, along with a “discreteness” classi-
fication of drift estimators.

The second goal is partly achieved, in that the re-
quired mean and variance computations were success-
fully carried out; results are presented below (Figs. 2
and 3). Unfortunately (and not unexpectedly), the
bias of the “net” (drift removed) mvar estimator de-
pends so heavily on the noise type that the author
does not know how to compensate for the bias with-
out human judgment of the dominant noise type and
a risky extrapolation of the sigma-tau curve to an un-
observable region.

2 Drift Estimator Design

The design is based on continous-time power-law mod-
els of phase noise. Let z(t),0 < ¢ < T, be the time
departure of a clock, with y (¢) = dx (t) /dt the nor-
malized frequency departure, and let w (t) = [z (¢) dt,
the continuous-time analog of the sequence w, =
> i=1 2 (nTo), whose third differences can be used for
computing modified Allan variance [2]. The idea is
to make an unbiased estimator of frequency-drift rate
from discrete values of w (¢) instead of values of z (t),
thus gaining the advantage of an integration over the
noise in z (¢). A quadratic component %ct? of z (t) ap-
pears as a cubic component £ct® of w (t); consequently,
at least four values of w () are needed.
Consider the one-parameter family of estimators

er) = T3r((15—r) M
y w(T)_w(O)_w(T—ITZ_")2;w(rT) ,

where 0 < r < 1/2. If w(t) were a cubic polynomial
with leading term %ct®, then &(r) would equal c. Se-
lection of r is based on the behavior of the variance
of &(r) under the five standard power-law z noises:
white PM, flicker PM, white FM, flicker FM, and
random-walk FM, with spectral densities S, (f) o< f7,
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B =0,-1,-2,-3,—4. Since Sy, (f) o f#~2, which is
integrable over high frequencies, one can do without a
high-frequency cutoff.

The parameter r is chosen according to a minimax
criterion. By the method of the generalized autocovari-
ance (gacv), closed-form expressions for varé(r) as a
function of r can be derived for the five noise types.
Figure 1 shows a plot of the ratio of varé(r) to its
minimum value for each 3. Since the upper envelope
of the five functions has a minimum at r = 0.0958. ..
(the intersection of the curves for white PM and white
FM)), it is reasonable to choose r = 1/10 for simplicity.
Doing so gives a drift estimator

. 50
Cya = '3"1:3

(2)

)+ (1))

henceforth called the four-point w estimator, abbrevi-
ated as w4. It is also apparent from Fig. 1 that the
performance of the estimator could be improved by
eliminating white PM from the noise set; the corre-
sponding minimax value of r would be about 0.0337.
In practice, one uses a discrete-time version of w4:
Given phase data z, = z (n71g) for n =1,..., N, form
the sequence w,, where wg is arbitrary (usually 0),
Wn = wWo + » 7y &;. Choosing an integer n; close to
N/10, let 71 = ny/N. The drift estimator is given by

6
N37tér; (1 —1r)

T

X 4'w(T)—4'w(0)—5w( 10

— Wy
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1
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Theoretical formulas for the variance of é,4 were
checked by simulations of &,44 for all five noise types,
with 1000 runs of N = 100 points each. Excellent
agreement was observed. Below, a possible method for
estimating the variance of é,4 from the data is given.

Cupad =

3 Comparison with Other Esti-
mators

Recent papers of Logachev and Pashev [4] and of Wei
[5] give variance tables for other unbiased drift esti-
mators under all or some of the standard noise types.
Following are names and abbreviations for these esti-
mators, and formulas for the continuous-time analogs
that were used for verifying the previous results and
consolidating them into a uniform notation.

Least-squares quadratic fit to z (LSz), optimal for
white PM:

60 [T

eLss 75 (6t — 6Tt +T%) z (t) dt
0

4)
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Figure 1: Parameter selection for the 4-point w drift
estimator. The minimax point of the five normalized
variance curves is circled.

60
75 [0 (T) —w (0)]

360 [T

A (2t —T)w(t) dt.

(5)

Three-point x (x3), also called overall second-
difference:

Cp3 = % [m(O) -2z (—g—) —I—x(T)} .

Least-squares linear fit to y (LSy), optimal for white
FM:

(6)

sy =5 [ (6= Ty@a "

T
/0 st dt. (8)

Least-squares constant fit to z = dy/dt (LSz), also
called two-point ¥y, optimal for random walk FM:

12

= s [ (0) + 2 ()] - 1

T
ts.=7 [ 20E=FWD-vO O

As defined, this estimator can be applied to random
walk FM but not to infinite-bandwidth white and
flicker FM (let alone the PM noises), for which point
values of y (t) are not defined. In its place one uses a
discrete-time version called two-point § (§2) or mean
second-difference:

N2
(N—1)T2

(10)

£)-<(F) <o)

X [m(T)—x(T—N
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for which the sample period of z (t) is presumed to be
T/N.

These drift estimators fall into a natural classifica-
tion that determines the noise types over which they
are effective. The w4 and LSz estimators are called w-
discrete because they contain discrete values of w (%),
and perhaps also integrals over w (). Likewise, x3,
LSy, and 42 are z-discrete, and LSz is y-discrete.

Table 1 gives the variance of all these drift estimators
over the five noise types, scaled according to the con-
vention S; (f) = hp42fP+? for the one-sided spectral
density of y (). For these results to apply to the actual
discrete-time estimators, the high-frequency cutoff fj
of the noise must satisfy the Nyquist criterion for the
sample period Tg, i.e., 2,70 < 1 [6]. The results are
asymptotic relative to the assumptions 27 f,T > 1,
N > 1. With minor changes in logarithmic expres-
sions, the results agree with the cited references. The
numbers in brackets are the rankings of the estimators
over those noises for which the variance is independent
of fy, and data size NV (in the range of the assumptions).

The similarity of the estimators in the same dis-
creteness class is apparent. The w-discrete estimators
are bandwidth-independent for all the noises, the z-
discrete estimators only for the FM noises. If all the
noise types are included, then w4 is the best overall
drift estimator. If only the FM noises are included,
then LSy is best; even so, for random walk FM the w4
variance is only 10% more than the LSy variance.

4 Gross and Net Mvar

Assume that the time deviation process z (f) has sta-
tionary second differences. Then it has a constant fre-
quency drift rate ¢;, which, if nonzero, gives rise to
an mvar component c272/2 that dominates mvar for
long averaging times. In terms of the time residuals
z, = = (n7g) and their cumulative sums w,,, we have

E (Afnxn) =c, 7%, FE (ToA?nwn) = ¢, T2,

where 7 = m7o, E denotes mathematical expectation,
and A,, is the backward difference operator with stride
m. According to the third-difference formulation of
mvar [2],

%ZE [(ToA?nwn)z] .

Because it includes drift, this is called gross mvar. To
define net mvar, replace the expected square by the
variance:

mod 0?2! (r)y=

L var (TOA?nwn)

modaz0 (1) = 54
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Net mvar, which is invariant to the value of c;, can
also be defined as mvar of the reduced time residual
process z () — c;t2/2.

Now suppose that one has time data z1, ..., zx with
sample period 7¢, and let T'= N7g. For any constant
¢, form the quantity

= modo? (1) —

N
Vo (1,T,¢) = i;i—M E (ToA,?n’wn - CTB)Z, (11)

n=3m

where M = N—3m-+1. Then V, (7,T,0) is an unbiased
estimator of gross mvar (and also gives (11) for any ¢ if
%, is replaced by z, —cT8n?/2 or wy, by w, —cTin?/6).
If ¢, is known, then V; (7, T, ¢;) is an unbiased estima-
tor of net mvar. More often, one has some unbiased
estimate ¢ that depends only on the data at hand.
In this case, the corresponding estimator V, (7,7, 8),
while nonnegative and invariant to the true value of
¢z, is biased for net mvar because subtracting an es-
timated drift tends to cut into the long-term random
fluctuations.

For theoretical computations of the mean and vari-
ance of these estimators, it is convenient to approxi-
mate the above setting by a continuous-time formula-
tion that uses the asymptotic modified Allan variance
of Bernier [6] and a continuous-time analog of (11) in
which the sum becomes an integral. This approxima-
tion is valid provided 7/7¢ > 1; simulations indicate
that 7/79 > 8 is adequate. The w4 drift estimator
Cwa is used for forming the biased net mvar estimator.
Because V, (7, T, ¢;) and Vg (T, T, éwa) are invariant to
true drift rate ¢;, one can assume ¢, = 0; then the third
w-differences have mean zero. Using the gacv method,
one can compare the mean of V, (T,T, éw4) to the true
net mvar; assuming also that the third w-differences
form a Gaussian process, one can compute the variance
of Vo (1,T,¢;) and V, (7,T,&ys). The computations,
similar to those for conventional Allan variance [7], are
not, given here. v

Figure 2 shows the bias of the net mvar estimator
Vi (7, T, Zw4) in terms of mdev (square root of mvar)
as a function of 7/T for the five standard noise types.
Caution: Plotted is the square root of the normal-
ized mean of the mvar estimator, not the normal-
ized mean of the square root of the mvar estimator.
As an example, take the most extreme case, random
walk FM and 7 = T/3, for which EV, (7,T,éwa) =
0.06352 mod Uzo (7); the plotted value is +/0.06352 =
0.252. Simulation results (N = 1152, 10000 trials),
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Figure 2: Bias of net mvar estimator with drift re-
moved, expressed as square root(estimator mean / true
mvar).

shown by the open symbols, agree well enough with
theory to serve as curve labels. Especially in view
of the persistent large negative bias for random walk
FM (still —12.5% in terms of mdev for 7 = 7/10),
one needs to adjust measurement results on a model-
dependent basis.

Figure 3 shows how removing the w4 estimated
drift changes the confidence of the mvar estimator.
Confidence is measured by equivalent degrees of free-
dom (edf), defined for a positive random variable X
by edf X = 2 (EX)2 /var X. Computations and ap-
proximations for the edf of the unbiased estimator
Vz (1,T, ¢;) have previously been given [2, 3]. Here,
the continuous-time formulation was used for approx-
imating those computations and computing the edf of
the biased net mvar estimator V, (7,T, é,4). Plotted is
edf (biased) — edf (unbiased) vs. 7/T for the standard
noises. The relative difference is small because all the
edfs are of order T/7; a simple conservative approxi-
mation for edf (biased) is edf (unbiased) — 0.75. At
T = T/3, each edf is 1 because the estimator is the
square of a single Gaussian random variable.

5 Estimating the Drift Estima-
tor Variance

In their discussion of the z3 drift estimator, Weiss
and Hackman [8] point out that its variance is sim-
ply (8/1%) 02, (T'/2), where 02, () is net conventional
Allan variance, i.e., Allan variance with the true drift
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Figure 3: Change in equivalent degrees of freedom
when removing drift from mvar estimate. Plotted is
edf(biased) - edf(unbiased).

removed. In turn, o2, (T/2) is to be estimated from
the data by extrapolating the estimated 02, () (using
&3 itself to remove drift) for lesser T out to 7 = T'/2.
This requires human judgment of the behavior of the
net sigma-tau curve in the face of increasing bias and
variance as T increases.

The variance of the w4 drift estimator can be esti-
mated by a similar method using net mvar. One finds

that
2

A
T—g mod 0%, (T/3)
where Ag = 3.70,3.14,3.14,3.41,3.80 for 8 =0 to —4
(white PM to random walk FM). Therefore, a con-
servative estimate of the standard deviation of &,4 is
(3.8/T)mod g9 (T'/3). Again, this requires intelligent
extrapolation of the curve for estimated net mdev out
to 7 = T'/3, where net mvar is essentially unobservable
because its estimator has one degree of freedom and a
bias as large as —93.6%.

var Cpq =

6 Concluding Remarks

The four-point w drift estimator described above de-
serves consideration as a general-purpose method for
estimating frequency drift rate. From Table 1 one can
calculate the ratio of its standard deviation to those
of the optimal estimators for the even-power noises:
1.242 for white PM, 1.111 for white FM, and 1.151
for random-walk FM. Although the random-walk FM
case is important, its optimal drift estimator, mean
second difference, performs poorly in the presence of



other phase noises. Moreover, the standard deviation
of the four-point w estimator is only 1.051 times that
of the second-place estimator, least-squares linear fit
to frequency.

The heavily model-dependent biases shown in Fig.
2 lead to an unsatisfactory situation in which guesses
about the long-term noise type have to be made in
order to compensate for the bias of the net mvar es-
timator. Other methods for uncoupling deterministic
and random aspects of clock data are already being
investigated or used. Higher-order variances, such as
Hadamard variance (mean-square third difference of z)
and wavelet variances, automatically kill the quadratic
component of z (t). The “totalvar” processing method,
which augments a data sequence with a reflected copy
of itself, has been found to reduce the bias of drift re-
moval from conventional Allan variance in a specific
case [9]. Perhaps a combination of frequency-domain
techniques could be useful: one might perform a spec-
tral estimation procedure to characterize the random
noise, while estimating the drift rate as the mean of the
second phase differences by applying a data taper with
low sidelobes, to reject all but the lowest-frequency
components. One could hope to assign confidence in-
tervals to the results in a model-free way.
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Table 1: Variance of frequency drift estimators. Names: w4 = 4-point w, LSz = least-squares quadratic fit to =,
z3 = 3-point z, LSy = least-squares linear fit to y, LSz = least-squares constant fit to 2, §2 = 2-point §. Each
entry is to be multiplied by the factor on the right. The numbers in brackets are rankings within each noise type.

w-discrete z-discrete
noise type w4 LSz z3 LSy LSz or 42 factor
white PM 1238001 90p) 241, T 18, T . hom—27-5
flicker PM  74.84[1] 75[2] 24In(4.441f,T) 18In(4.117f,7T) hym 2T %
white FM Wp Dy 8(3] 6[1] N hoT 3
flicker FM  10.900[2] 2[4 16 In 23] 9] 3+2InN  h_;T72
rand.-wk. FM 383 2 814 209 201 h_om?T~1
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