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Whispering-gallery-mode electro-optic modulator
and photonic microwave receiver
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We report on the experimental observation of efficient all-resonant three-wave mixing using high-Q
whispering-gallery modes. The modes were excited in a millimeter size toroidal cavity fabricated from
LiNbO3 . We implemented a low-noise resonant electro-optic modulator based on this wave mixing process.
We observe an efficient modulation of light with coherent microwave pumping at 9 GHz with applied power of
approximately 10 mW. Used as a receiver, the modulator allows us to detect nanowatt microwave radiation.
Preliminary results with a 33-GHz modulator prototype are also reported. We present a theoretical interpre-
tation of the experimental results and discuss possible applications of the device. © 2003 Optical Society of
America
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1. INTRODUCTION
Whispering-gallery modes play a significant role in mod-
ern nonlinear optics. High-quality factors and large field
densities associated with whispering-gallery modes in di-
electric resonators result in resonant enhancement of
nonlinear interactions of various kinds.1–6 These modes
provide the opportunity to achieve a high nonlinear re-
sponse with weak electromagnetic fields, even if the cav-
ity is fabricated from a material with low nonlinearity, as
is usually the case for optically transparent materials.
In this way, whispering-gallery modes can also be used in
applications such as all-optical switching devices,7–9

microlasers,10–19 and optical sensors.20–24 In particular,
many future communications applications such as micro-
wave cellular phone and personal data assistant net-
works require devices capable of receiving, transforming,
and processing signals in a millimeter wavelength
domain.25 Electro-optic modulators based on electromag-
netic wave interaction in nonlinear optical cavities with
high-Q whispering-gallery modes will play an enabling
role for these and similar applications.

The motivation for the optical cavity-based modulators
stems from the large operating powers required to drive
the existing modulators. Both broadband-integrated
Mach–Zehnder modulators and free-space microwave
cavity-assisted narrowband modulators typically require
approximately 1 W of microwave power to achieve a sig-
nificant modulation. By utilizing high-Q resonances in-
stead of zero-order interferometry or polarization rotation
as the basis for electro-optic modulation one can poten-
tially reduce the controlling power by many orders of
magnitude. This, of course, is at the expense of a limited
bandwidth that nevertheless is still practical for many
applications.

The core of the modulator can be a cavity made with a
second-order nonlinearity material, such as LiNbO3 .
Optical losses in lithium niobate are small enough to al-
low for relatively high Qs of whispering-gallery modes.
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With such modes the microwave power can be applied to a
small volume, which increases the field at a given voltage
but leaves a small capacitive load. This configuration al-
lows the high Q of the cavity to be preserved. Hence,
even a small voltage applied across the area of confine-
ment of the optical field is enough to induce a change in
the frequency of the whispering-gallery resonance with a
magnitude comparable to its bandwidth. This forms the
basis for an efficient modulation.

Most of the previous studies in this area have dealt
with nonlinear cavity optics in a single-mode regime.
The higher the quality factor of the cavity modes in this
regime, the stronger the nonlinear interactions. How-
ever, this relationship also creates a narrow spectral
range where the nonlinear interactions take place. This
seriously restricts the application of the resonant nonlin-
earities for the enhancement of wide-band nonlinear phe-
nomena, which include multiwave mixing, photon upcon-
version and downconversion, and broadband optical
modulation. These applications are important for ad-
vanced, high-speed communications systems.

At first glace it might seem obvious that use of multiple
modes of a nonlinear cavity will further benefit strong
nonlinear interactions among electromagnetic waves of
different frequency. However, such interactions usually
are strongly forbidden by the momentum conservation
law (phase-matching condition) because whispering-
gallery modes of a rotationally symmetric dielectric reso-
nator are orthogonal to each other in the momentum
space. Interactions between these modes are possible
only if the symmetry of the system is broken. Note, how-
ever, that to be useful, an artificial lifting of the symmetry
should conserve the main properties of the modes,
namely, their high-quality factor and small volume.

An approach to overcome this phase-matching deadlock
for the three-wave mixing problem was recently
proposed.20,21,26 In those studies we achieved an efficient
resonant interaction of several optical whispering-gallery
2003 Optical Society of America
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modes and a microwave mode by engineering the shape of
a microwave resonator coupled to a microtoroidal optical
cavity.27 On the basis of this interaction, a new kind of
electro-optic modulator was suggested.20,26,28–31

In this paper we present a detailed experimental and
theoretical study of the all-resonant optical microwave in-
teraction. We show that an efficient three-wave mixing
process can be realized based on the high-quality factors
of the optical whispering-gallery modes and the micro-
wave mode. This wave mixing approach has a high satu-
ration threshold with respect to the optical fields and a
high sensitivity to the microwave field. Utilizing this, we
have designed, fabricated, and tested a prototype electro-
optic modulator in the X band (at 9 GHz) and have per-
formed a preliminary study of a prototype working in the
Ka band (at 33 GHz). Finally, we present data for high-
efficiency light modulation with small microwave powers
(1-mW modulator controlling power) and discuss the fea-
sibility of this scheme for photonic reception of microwave
signals with direct upconversion into the optical domain.

2. EXPERIMENT
The scheme of our experimental device is shown in Fig. 1.
Light from a distributed feedback laser is sent into a
spheroid optical cavity by a coupling diamond prism.
The input optical power at 1550 nm entering the coupling
prism ranged from 2 to 5 mW. Total optical output effi-
ciency of the system was limited to 210 dB. The cavity
was fabricated from a commercial-grade flat Z-cut
LiNbO3 substrate. The quality factors of the loaded
modes of the cavity were measured to be Q 5 5 3 106 (fi-
nesse 1/T . 300). The maximum unloaded quality fac-
tor was approximately Q 5 5 3 107. We believe that
this value is determined by the bulk-material absorption.
In this setup the laser carrier frequency is scannable
within the range of ;8 3 1010 MHz.

The basic geometric parameters of the optical cavity
are shown in the inset of Fig. 1. The cavity is a disk with
radius a 5 2.4 mm and thickness d 5 150 mm. The
sidewall of the disk is polished such that the cavity be-
comes a segment of an oblate spheroid with a large semi-
axis a and a small semiaxis b 5 A2ad , a. In our case
the transverse curvature diameter is approximately b
5 180 mm, and the extraordinary axis of LiNbO3 coin-
cides with the symmetry axis of the cavity. The index of
refraction of the prism (it is np 5 2.42 for diamond) ex-

Fig. 1. Experimental setup: (1) LiNbO3 optical cavity, (2) mi-
crowave resonator, (3) microwave feeding strip line, and (4) dia-
mond coupling prism. Inset: geometric characteristics of the
nonlinear optical cavity.
ceeds the effective index of refraction of the cavity
whispering-gallery modes n 5 2.14 to create an effective
coupling.

The optical cavity is placed between two electrodes of a
resonator that is pumped with an external microwave
source. The cavity-based modulator requires that its in-
put light be tuned in frequency to a particular mode.
Then modulation sidebands can result from the nonlinear
optical excitation of adjacent Stokes and anti-Stokes
modes. Because adjacent whispering-gallery modes dif-
fer in their azimuthal field dependence by exactly one pe-
riod added to the closed circular waves, the microwave
field applied to the resonator must not be uniform along
the rim. Otherwise, the nonlinear polarization will not
have any azimuthal frequency corresponding to the adja-
cent modes and no modulation will occur.

To tailor the microwave field configuration for optimal
nonlinear interactions, we used a half-wave microstrip
cavity fabricated by placing a half-circular electrode along
the rim of the resonator. A typical quality factor of such
a cavity is QM 5 100, with a bandwidth of ;150 MHz,
which is sufficiently close to the bandwidth of the optical
resonances. By tuning the length of the strip-line elec-

Fig. 2. Reflection spectrum of the nonlinear optical cavity. The
free spectral range is 9.155 GHz. The mode quality factor is ap-
proximately 5 3 106.

Fig. 3. Demodulated microwave power versus frequency of the
microwave pumping. The zero level corresponds to the satura-
tion power. The curve for the 2.5-nW pump was taken with 20-s
averaging. This explains the lowering of the background noise
level. However, even without the averaging we can see the
nanowatt signals.
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trodes, we can tune the microwave cavity to a frequency
equal the optical free spectral range. The index of refrac-
tion of the lithium niobate for the microwave radiation is
nmw . 5. The spectrum of TE modes of the optical cavity
is shown in Fig. 2. One can see clean mode structures
with distinct individual resonance peaks and a free spec-
tral range of 9.155 GHz. The contrast of the absorption
peaks in fiber-to-fiber transmission is more than 80%.

A typical frequency response of the modulator is pre-
sented in Figs. 3 and 4. To obtain the results shown in
Figs. 3 and 4, the laser frequency is kept at resonance
with one of the whispering-gallery modes. The micro-
wave frequency is then scanned, and the demodulated mi-
crowave power at the output a high-speed photodetector
is recorded. The 3-dB bandwidth of the modulator is con-
sistent with the bandwidths of the optical cavity and the
microwave resonator. The two curves presented in Fig. 3
are taken well under the saturation limit shown by the
0-dB level. The smallest detectable microwave power
(the sensitivity of the photonic receiver) was approxi-
mately 1 nW.

A typical spectrum of modulated signal, measured with
an optical etalon for 10 mW of microwave power, is shown

Fig. 4. Optical etalon transmission (frequency spectrum of the
modulated signal) versus etalon frequency scanning. Zero fre-
quency corresponds to the carrier frequency of pumping the sys-
tem light.

Fig. 5. Normalized demodulated microwave power versus
power of the microwave pump. The absolute value of the de-
modulated microwave signal is approximately 30 dB less than
the input microwave power.
in Fig. 4. It is important to note that the amplitude of
the central peak does not represent the total power that
leaves the optical cavity. This is because approximately
20% of the pump light is reflected by the coupling prism
without entering the cavity. The ratio between the gen-
erated sidebands, on the other hand, does show the actual
ratio of their powers in the cavity.

The dependence of the microwave power output of the
modulator on the input microwave power is presented in
Fig. 5. The saturation point at ;11 mW corresponds to
the limit imposed by harmonic multiplication, as well as
the power broadening of the optical resonance. The opti-
mal operational power within the linear regime is esti-
mated at 1 mW.

The dependence of the relative sideband power on the
power of the microwave field in the resonator is shown in
Fig. 6. It is easy to see that the saturation for the first
sideband and the significant growth of the second and
third sidebands correspond to the saturation of the de-

Fig. 6. Normalized power of optical harmonics generated in the
modulator versus power of the microwave pump. The unity
power corresponds to the maximum power of the first harmonic
measured in our experiment. The curve is taken with optical
etalon transmission dependence (Fig. 4).

Fig. 7. Whispering-gallery-mode response curves for various
powers of the microwave pump.
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modulated microwave signal shown in Fig. 5. The broad-
ening of the optical spectrum with increased microwave
power is shown in Fig. 7. The width of the optical reso-
nance increases nearly by a factor of 2 at the point of
modulation saturation.

It is also interesting to check the details of the modu-
lation in the system. To do this we measure the depen-
dence of the demodulated microwave power on the detun-
ing of the pump-laser frequency from the resonance with
a whispering-gallery mode (Fig. 8). There is no signal at
the point of exact resonance, whereas the maximum
power appears for the tuning on the sloping side of the
mode curve. Because the demodulated power is nonzero
for amplitude-modulated light, we might say that there is
no amplitude modulation for the resonant tuning of the
light and the microwaves. Our theoretical calculations
nevertheless predict that there is a phase modulation in
this case.

Finally, Fig. 9 represents the preliminary experimental
data for the Ka-band modulator prototype. For these
data, the toroidal optical resonator has a diameter of 1.35
mm, a thickness of 120 mm, and a transverse curvature
diameter of 150 mm. The optical free spectral range of
the cavity is 33.1 GHz and the quality factor is ;106.
The

Fig. 8. Top: whispering-gallery-mode resonance. Bottom:
demodulated microwave power versus detuning of the pump
light from the whispering-gallery-mode resonance. No signal is
found for the resonant tuning.

Fig. 9. Normalized demodulated microwave power versus fre-
quency of the pump microwave field for the Ka-band modulation
frequency.
quality factor is smaller because the cavity is in full con-
tact with the prism coupler. The microwave cavity qual-
ity factor is approximately 60. Despite smaller dimen-
sions and mode volumes as compared with the X-band
modulator, we were unable here to reach saturation with
the available maximum microwave power of ;30 mW be-
cause of the smaller Q. In our future prototypes we ex-
pect to significantly reduce the needed microwave power
through several changes such as improving the surface
quality in the resonators, the introduction of a prism–
resonator air gap to optimize the coupling strength, and
the elimination of the extra losses in the microwave cav-
ity.

3. THEORY
In what follows we briefly describe the mode structure of
a dielectric spheroid and estimate the free spectral range
for different kinds of mode. We then consider modes of
an open cavity as independent entities (quasi-mode ap-
proach). Finally, we evaluate the problem of the interac-
tion among three whispering-gallery cavity modes and a
single mode of a microwave resonator.

A. Whispering-Gallery Modes
The whispering-gallery mode can be modeled as a closed
circular beam supported by total internal reflections from
boundaries of a dielectric cavity. A general analytic solu-
tion to describe these modes is difficult to obtain. The
simplest eigenvalue and eigenfrequency problem for elec-
tromagnetic field propagation in a dielectric sphere has
been solved in Ref. 32. Calculation of the spectrum of an
arbitrary dielectric spheroid, however, is not a trivial
task. In contrast to the case of small eccentricity,33 exact
analysis of a highly eccentric spheroid or toroid cannot be
based on a simple approximation. To avoid complica-
tions, however, we characterize the whispering-gallery
modes of a toroid following the approach introduced in
Ref. 20.

A good approximation for whispering-gallery-mode
eigenfrequencies in an ideal dielectric sphere with radius
a much larger than the mode wavelength can be written
as

nklmqa 5 tlq 2
j

~n2 2 1 !1/2 , (1)

where klmq is the mode wave number, tlq is the qth zero of
the spherical Bessel function of the order l, and n is the
index of refraction of the material. The coefficient j is
equal to n for TE modes and 1/n for TM modes. For large
orbital number l, tlq ' l 1 O(l1/3), it can be calculated ei-
ther directly or approximated by the zeros of the Airy
function.34

The second term on the right-hand side of Eq. (1) rep-
resents the fact that the dielectric cavity is open. The op-
tical field tunnels outside the cavity surface at the char-
acteristic length ;1/@(n2 2 1)1/2klmq#. The larger the
refractive index n, the smaller is this length and the
closer is the solution of Eq. (1) to the solution for a closed
cavity.
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To estimate the eigenvalues of the whispering-gallery
modes in an oblate spheroid of large semiaxis a, small
semiaxis b, a @ b, and eccentricity « 5 (1 2 b2/a2)1/2,
we recall that eigenfrequencies of high-order whispering-
gallery modes (l @ 1, m . l) (in an ideal sphere as well
as in the spheroid) can be approximated by solutions of
the scalar wave equation with zero boundary conditions.
This is because most of the energy is concentrated in one
component of the electromagnetic field (Eu for TE modes
and Er for TM modes) and the tangential component of
electric field E (TE modes), or the normal component of
induction D (TM modes) is continuous at the boundary.
For the spheroid expression, similar to Eq. (1), we have

nk̃mqa 5 Tmq 2
j

~n2 2 1 !1/2 , (2)

where k̃mq 5 (klmq
2 2 k'

2)1/2, k' is the wave number for
the angular spheroidal function and Tmq is the qth zero
for cylindrical Bessel function Jm(Tmq) 5 0. Because
whispering-gallery modes are confined in the cavity equa-
torial region, we use cylindrical, not spherical, functions
in our calculations.

For our purposes a rough approximation of k' is
enough:

k'
2 '

2~l 2 m ! 1 1

a2~1 2 «2!1/2 m. (3)

Because klmq ' l/(na) and k' ' (1 2 «2)21/4Al/a, klmq
@ k' for our experimental parameters. Hence we can
write

klmq . k̃mq 1
k'

2

2k̃mq

. (4)

Substituting Eq. (2) and approximation (3) into relation
(4), we finally derive

nklmqa 5 tlq 2
j

~n2 2 1 !1/2

1
2~l 2 m ! 1 1

2 F1 2 ~1 2 «2!1/2

~1 2 «2!1/2 G . (5)

Let us find the frequency splitting between two succes-
sive modes using the expression v lmq 5 cklmq :

v l11,mq 2 v lmq . v lmq 2 v l21,mq

5
c

na
@1 1 0.62l22/3 1 O~l25/3!#, (6)

v l,m11,q 2 v lmq . v lmq 2 v l,m21,q

5 2
c

na F1 2 ~1 2 «2!1/2

~1 2 «2!1/2 G . (7)

Therefore by varying the geometric parameters of the cav-
ity we are able to create an almost equidistant array of
modes with a free spectral range of our choice.

The goal of our study is to achieve an efficient nonlin-
ear coupling between each pair of neighboring modes with
different numbers l by means of externally applied micro-
wave fields of the same frequency as the modes’ free spec-
tral range. We place the cavity in the microwave resona-
tor for this purpose.

B. Quasi-Mode Approach
We use the quasi-mode approach (see, for example, Ref.
35) to analytically describe the interaction among differ-
ent modes inside a microtoroidal optical cavity. We as-
sume that each mode in the cavity can be considered in-
dependently. This assumption is valid when the
frequency splitting between the modes significantly ex-
ceeds the mode bandwidth, which is usually the case for
any high-Q mode of a cavity.

Let us consider a lossless cavity connected by a lossless
coupler to an ideal transmission line with energy trans-
mission coefficient T (1 . T). The value of 1/T deter-
mines the cavity finesse. The electromagnetic field E in(t)
in the transmission line enters the cavity through the
coupler, and Eout(t) exits the cavity and travels in the op-
posite direction to E in(t). We introduce the cavity field
by two electromagnetic waves propagating inside the cav-
ity and going out of the coupler @E1(t)# and into the cou-
pler @E2(t)#.

Assuming that the coupler has a zero response time, we
can write the boundary conditions on the coupler surface
as

E1~t ! 5 E in~t !AT 2 E2~t !~1 2 T !1/2, (8)

Eout~t ! 5 2E in~t !~1 2 T !1/2 2 E2~t !AT. (9)

Fields E1 and E2 are connected by the condition

E2~t ! 5 2E1~t 2 t!, (10)

where t is the round-trip time for the cavity (t
5 2pan/c for the case of a whispering-gallery mode,
where a is the mode radius, n is the medium index of re-
fraction, and c is the speed of light in the vacuum).

The set of Eqs. (8)–(10) is quite general. Let us sim-
plify the problem and consider the case when the field in-
side the cavity can be presented as a product of a fast os-
cillating part exp(2ivt) and a slow oscillating part Ẽ(t),
i.e., E(t) 5 Ẽ(t)exp(2ivt). The carrier frequency v coin-
cides with one of the resonant frequencies of the cavity,
vt 5 2pN (N is a real number).

We assume that the slow field amplitude inside the cav-
ity does not change significantly during the single round-
trip time. Then the expression of Eq. (10) can be ex-
panded into a Taylor series. Keeping linear term in t
only, we obtain

Ẽ2~t ! . 2 Ẽ1~t ! 1 tE8 1~t !. (11)

We also assume that

1 2 ~1 2 T !1/2 .
T

2
. (12)

Substituting relations (11) and (12) into Eq. (8) we obtain
an equation that allows us to calculate the field inside the
cavity, if we know the pump field:
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E8 1~t ! 1
T

2t
Ẽ1~t ! 5

E in~t !

At
exp~ivt !AT

t
. (13)

It is convenient to introduce a decay g 5 T/(2t) and an
external force F 5 E in(T/t 2)1/2; then the Eq. (13) can be
rewritten in the form

Ė1~t ! 1 ~iv 1 g!E1~t ! 5 F~t !. (14)

Equation (14) describes the evolution of the amplitude of
the field inside the cavity. For exact resonant tuning and
time-independent pump field E in , the ratio of light power
inside the cavity W1 and outside the cavity W in is 2/(gt).
The total energy accumulated in the cavity is W1t
5 2W in /g.

To find the field that exits the cavity, we use Eq. (9) that
can be rewritten as

Eout~t ! 5 2E in~t ! 1 E1~t !AT. (15)

It is worth noting that Eq. (14) describes the evolution
of a single cavity mode with carrier frequency v. Equa-
tion (14) is valid under the conditions of relations (11) and
(12). Moreover, we have to demand that the pump field
E in be nearly resonant with the cavity mode.

C. Interaction of Light and Microwaves
Let us consider the problem of the nonlinear interaction
of a single whispering-gallery mode pumped with radia-
tion of a laser having carrier frequency v0 and a micro-
wave field mode pumped with radiation having frequency
vM . We study the generation of Stokes and anti-Stokes
sidebands, having v0 2 vM and v0 1 vM frequencies.
We assume that neighboring cavity modes are nearly
resonant with the sidebands.

Generally, sidebands with frequencies v0 6 NvM (N
5 1, 2, 3,...) can be generated. We restrict our consider-
ation to three whispering-gallery modes and a single mi-
crowave field mode and neglect the higher-order harmon-
ics.

The Hamiltonian describing this system is

Ĥ 5 Ĥ0 1 V̂. (16)

Ĥ0 is the free part of the Hamiltonian:

Ĥ0 5 \vâ†â 1 \v2b̂2
†b̂2 1 \v1b̂1

†b̂1 1 \vcĉ
†ĉ,

(17)

where v and v6 are the eigenfrequencies of the optical
cavity modes; vc is the eigenfrequency of the microwave
cavity mode; and â, b̂6 , and ĉ are the annihilation opera-
tors for these modes, respectively.

The interaction part of the Hamiltonian is

V̂ 5 \g~ b̂2
†ĉ†â 1 b̂1

†ĉ â ! 1 adjoint, (18)

where

g 5
4pv

ea
x~2 !S 2p\vc

ecVc
D 1/2S 1

V EV
dV CaCbCcD (19)

is a coupling constant; x (2) is the effective second-order
electro-optic constant for the material of the dielectric
cavity; ea and ec are the dielectric susceptibilities for
the optical and microwave frequencies; V is the whisper-
ing-gallery-mode volume; Vc is the volume of the micro-
wave field; and Ca , Cb , and Cc are the normalized di-
mensionless spatial distributions of the modes. We as-
sume here that the whispering-gallery modes are nearly
identical, i.e., v . v6 @ vc , V . V6 , *dV CaCb2Cc
5 *dV CaCb1Cc . It should be noted here that this con-
sideration is based on earlier studies on the subject of
parametric interactions.36–38

Using the Hamiltonian in Eq. (16) we derive equations
of motion for the field operators:

ȧ̂ 5 2ivâ 2 ig* ~ b̂2ĉ 1 ĉ†b̂1!, (20)

ḃ̂2 5 2iv2b̂2 2 igĉ†â, (21)

ḃ̂1 5 2iv1b̂1 2 igĉâ, (22)

ċ̂ 5 2ivcĉ 2 igb̂2
†â 2 ig* â†b̂1 . (23)

In reality, the optical cavity and the microwave resona-
tor are open systems, pumped externally. Thus the
pump and decay terms do not follow from the Hamil-
tonian approach and should be introduced in the same
way as was done in Subsection 3.B. We also assume that
the fields are classical, so we can neglect vacuum fluctua-
tions leaking into the cavity. As a result, Eqs. (20)–(23)
transform to

Ȧ 5 2GAA 2 ig* ~B2C 1 C†B1! 1 FA , (24)

Ḃ2 5 2GB2B2 2 igC†A, (25)

Ḃ1 5 2GB1B1 2 igCA, (26)

Ċ 5 2GCC 2 igB2
†A 2 ig* A†B1 1 FM , (27)

where

GA 5 i~v 2 v0! 1 g,

GB7 5 i~v7 2 v0 6 vM! 1 g,

GC 5 i~vc 2 vM! 1 gM ,

in which A, B6 , and C are the slowly varying amplitudes
of the operators â, b̂, and ĉ respectively; the optical g and
microwave gM decay rates as well as pump forces FA and
FM are introduced as in Eq. (14).

Let us solve the set of Eqs. (24)–(27) in the steady
state. Neglecting the optical saturation of the microwave
oscillations, we obtain from Eqs. (24) and (27)

A 5 2i
g*

GA
~B2C 1 C†B1! 1

FA

GA
, (28)

C .
FM

GC
. (29)

Substituting Eq. (28) and relation (29) into Eqs. (25) and
(26) in the steady state, we obtain

B2 5 2
igFAFM* GB1GC

GB2GB1GAuGCu2 1 u gu2uFMu2~GB1 1 GB2!
,

(30)
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B1 5 2
igFAFMGB2GC*

GB2GB1GAuGCu2 1 u gu2uFMu2~GB1 1 GB2!
.

(31)

Finally, for the pump mode we derive

A 5
GB2GB1uGCu2FA

GB2GB1GAuGCu2 1 u gu2uFMu2~GB1 1 GB2!
. (32)

To find the expressions for the output light we use Eq.
(15) and derive

Eout2

5 2E in

2iggFM* GB1GC

GB2GB1GAuGCu2 1 ugu2uFMu2~GB1 1 GB2!
, (33)

Eout1

5 2E in

2iggFMGB2GC*

GB2GB1GAuGCu2 1 u gu2uFMu2~GB1 1 GB2!
, (34)

Eout

5 E in

3
GB2GB1~GA 2 2g!uGCu2 1 u gu2uFMu2~GB1 1 GB2!

GB2GB1GAuGCu2 1 u gu2xuFMu2~GB1 1 GB2!
.

(35)

Let us now calculate the power of the output light for the
carrier wave W0 and the harmonics W6 with respect to
the pump power W in . For the sake of simplicity, we con-
sider the entirely resonant case, i.e., GA 5 GB6 5 g, GC
5 gM . Introducing the quality factors as Q 5 v0 /(2g)
and QM 5 vM /(2gM), and recalling that uCu2

5 uFMu2/gM
2 5 4WMQM /(\vM

2), where WM is the input
microwave power, we derive the following expressions
from Eqs. (33)–(35):

W6

W in
5 S 2S

1 1 2S2D 2

, (36)

W0

W in
5 S 1 2 2S2

1 1 2S2D 2

, (37)

where

S 5
4u guQ

v0
S WMQM

\vM
2 D 1/2

(38)

is the saturation parameter. Substituting Eq. (19) into
Eq. (38), we obtain

S 5 Q
16px~2 !

ea
S 2pWMQM

ecvMVC
D 1/2S 1

V EV
dVCaCbCcD .

(39)

Equations (36) and (37) tell us that there is an opti-
mum value for the microwave power at which the conver-
sion of the carrier frequency to the Stokes and anti-Stokes
sidebands is most efficient. In principle, a complete con-
version is possible for 2S2 5 1. In real experiments,
however, a complete conversion does not happen because
of the light and microwave power absorption. In our ide-
alized model the couplers, transmission lines, the optical
cavity, and the microwave resonator are all assumed to be
lossless. In particular, the decay terms account only for
the transmission (and not absorption) of the fiber cavity
couplers. Absorption will change Eqs. (8)–(10) that we
used in our model.

In the experiments reported above we measured a pho-
tocurrent that is proportional to

I ; uEout 1 Eout 2 exp~ivMt ! 1 Eout 1 exp~2ivMt !u2.

(40)
The photocurrent resulting from the microwave carrier
frequency is

IM ; ~EoutEout2* 1 Eout* Eout1!exp~2ivMt ! 1 c.c.,

(41)
where c.c. stands for complex conjugation. Substituting
Eqs. (33)–(35) into approximation (41) we can see that IM
is zero for the all-resonant case if g is real (pure phase
modulation). The signal IM is maximized if g is imagi-
nary (amplitude modulation). In our case g is real.

We observe the modulation in the experiment because
(i) the coupling of pump light and the cavity is not critical,
i.e., Eout has a constant bias compared with Eq. (35); (ii)
we cannot exactly tune to the resonance of the loaded op-
tical cavity or microwave resonator; and (iii) the cavity
modes are not exactly equidistant. The calculated de-
modulated microwave power is shown in Fig. 10 as a func-
tion of laser detuning from the whispering-gallery-mode
resonance. The plot is for an equidistant mode spectrum.
We took into account that approximately 20% of the input
light reflects from the coupling prism directly to the out-
put channel and does not interact with the cavity because
we do not have critical coupling. Therefore the output
signal on the photodetector contains 20% of the nonmodu-
lated light and 80% of the modulated light.

Let us estimate the interaction constant from Eq. (19).
Taking v 5 1015 rad/s, vc 5 7 3 1010 rad/s, x (2)

5 10211 m/V 5 3 3 1027 cgs (the value of the electro-
optic constant does not coincide here with the value of the
r33 constant for LiNbO3 because the electric field of the

Fig. 10. Top: theoretically evaluated whispering-gallery-mode
resonance. Bottom: theoretically evaluated demodulated mi-
crowave power versus detuning of the pump light from the
whispering-gallery-mode resonance. No signal is found for the
resonant tuning.
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microwave cavity is not exactly collinear with the crystal
axis), Vc 5 1024 cm3, and the mode overlapping integral
(...) 5 0.5, we obtain g 5 145 rad/s.

In the experiment we have a maximum frequency con-
version (S 5 221/2) for WM ' 10 mW, QM ' 100, vM
' vc , and Q ' 106. This gives us g ' 125 rad/s [see
Eq. (38)].

The difference between the measured and the calcu-
lated values of g can be explained when we allow for the
imperfect mode overlap, absorption in the system, and the
generation of additional harmonics that we did not take
into account.

4. MULTIPLE HARMONIC GENERATION
We have considered the case when interactions of light
and microwave fields lead to the generation of two har-
monics. This, however, is generally not the case, and
multiple harmonic generation is possible if the cavity
modes are equidistant in frequency and the distance be-
tween them is equal to the microwave frequency.

To describe harmonic generation we rewrite the inter-
action Hamiltonian as

V̂ 5 \g (
n52`

`

~ ân21
†ĉ†ân 1 ân11

†ĉ ân! 1 adjoint, (42)

where ân is the annihilation operator for the nth cavity
mode. We assume that modes are completely identical
with respect to their quality factors and coupling strength
to the microwave field.

Using Eq. (42) we derive the equations of motion for the
modes. For the sake of simplicity we consider the case of
exact resonance for all the modes. In slowly varying am-
plitude and phase approximation the equations for the ex-
pectation values of the field amplitudes are

Ȧn 5 2gAn 2 ig~An21C 1 C* An11! 1 FAdn,0 , (43)

Ċ 5 2gMC 2 ig (
n52`

`

~An21* An 1 An* An11! 1 FM ,

(44)

where FA stands for the pump, d i, j 5 1 if i 5 j, and d i, j
5 0 if i Þ j. In other words, we assume that only a
mode with ṅ 5 0 is pumped. Then A61 corresponds to
B6 in our above consideration.

We assume that the set of Eqs. (43) and (44) has a
steady-state solution:

gAn 1 ig~An21C 1 C* An11! 5 FAdn,0 , (45)

gMC 1 ig (
n52`

`

~An21* An 1 An* An11! 5 FM . (46)

Equations (45) and (46) can be solved by Fourier transfor-
mation:

A~t ! 5 (
n52`

`

An exp~2ivMnt !. (47)

In the case of exact resonance, the amplitude of the mi-
crowave field does not depend on the light intensity [see
relation (29)] C 5 uFMu exp(ifM)/gM . Then multiplying
each term of Eq. (45) on exp(2ivM nt) (n corresponds to
the index of the term gAn) and summing them over all n,
we derive

A~t ! 5
FAgM

ggM 1 2iguFMucos~vMt 1 fM!
. (48)

The solution for each mode An can be written as

An 5
1

2p
E

0

2p/vM

A~t !exp~ivMnt !dt. (49)

To find the expression for the output light we use Eq. (15):

Eout~t ! 5
1 2 2iS cos~vMt 1 fM!

1 1 2iS cos~vMt 1 fM!
E in~t !

5 E in~t !exp$22i arctan@2S cos~vMt 1 fM!#%.

(50)

Therefore, in the case of multiple harmonics, the behavior
of the system is different from the case of only three har-
monics. An increase of the microwave power leads to the
increase of the number of optical harmonics instead of the
saturation and a decrease in the field amplitude, as was
shown in Section 3.

Fig. 11. Evaluated frequency spectrum of the modulated signal.
Zero frequency corresponds to the carrier frequency of the pump-
ing light.

Fig. 12. Evaluated normalized power of optical harmonics gen-
erated in the modulator versus power of the microwave pump.
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We solve the set of Eqs. (45) and (46) for the same con-
ditions as those used in Figs. 4 and 6. The result of the
calculations are presented in Figs. 11 and 12. One can
see a satisfactory correspondence between the experimen-
tal and the theoretical results.

5. DISCUSSION
Three-wave mixing is essentially a parametric process
based on nonlinear media with x (2) nonlinearity. This
kind of wave mixing is not efficient in bulk materials be-
cause of the phase mismatch among the pump and the
generated waves. The usual solution to this problem is
the fabrication of artificially phase-matched materials.

This method, however, is not strictly applicable for in-
tracavity nonlinear optics because the modes are orthogo-
nal to each other in the momentum space, and the overlap
integral for the modes taken over the entire cavity volume
usually goes to zero. It is nonetheless possible to distrib-
ute a nonlinear medium in different regions of a cavity to
avoid this problem. This solution, however, is difficult to
implement when the cavity itself is constructed from a ho-
mogeneous nonlinear material, as is the whispering-
gallery-mode cavity in our experiment.

As an alternative, we consider wave mixing of light and
microwaves and use an optical cavity as well as a micro-
wave resonator. In this way, instead of modifying the
shape of a nonlinear medium, we modify the shape of the
microwave resonator. The resonator covers only a half of
the optical mode space and provides a variation of the mi-
crowave field over the perimeter. The mode overlap inte-
gral is nonzero in this case.

It is interesting to note that the mode orthogonality
that causes problems with mode interaction also results
in the useful effect of decreasing the noise in the system.
Electro-optical crystals like LiNbO3 usually suffer from
undesirable acoustic resonances because an electric field
applied across a crystal induces stress by piezoelectricity.
The induced stress gives rise to a strain, which in turn in-
duces a change in the refractive index of the material
through the photoelectric effect. Consequently the re-
fractive index of a free electro-optic crystal changes in a
complex manner that decreases the quality of the modu-
lation.

To circumvent this problem, we use a small cavity fab-
ricated from LiNbO3 . The cavity has a sparse acoustic
as well as optical spectra. The acoustic modes them-
selves are usually orthogonal to the optical modes, and
the strain induced in the material does not influence the
light. In a similar manner, Brillouin scattering that usu-
ally decreases the performance of fiber-optic devices does
not introduce any serious restriction in our case.

6. CONCLUSION
We propose theoretically, and implement experimentally,
a configuration with high-Q whispering-gallery modes ex-
cited in a nonlinear dielectric resonator to create an effi-
cient mixing of light and microwave fields. We are able
to overcome restrictions imposed by phase-matching con-
ditions on the experimental realization of this process
through engineering the geometries of the optical cavity
and microwave resonator. With this approach, we devise
optical modulators and microwave receivers operating un-
der a broad range of parameters. Our results are useful
for practical as well as fundamental applications.
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