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Low-threshold parametric nonlinear optics with
quasi-phase-matched

whispering-gallery modes
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We propose to fabricate a toroidal dielectric cavity from a periodically poled x (2) nonlinear material (e.g.,
LiNbO3) to achieve efficient interaction among high-Q whispering-gallery modes. We show that the periodic
poling allows for suppression of both material and cavity dispersion. Such a cavity might be a basic element
of a family of efficient nonlinear devices operating at a broad range of optical wavelengths. © 2003 Optical
Society of America
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1. INTRODUCTION
Whispering-gallery modes (WGMs) in optical microcavi-
ties are attractive in nonlinear optics because of their
small mode volumes and high quality.1,2 Efficient para-
metric nonlinear interaction among modes is possible if
the cavity that supports WGMs is fabricated from a low-
loss x (2) nonlinear material. However, nonlinear para-
metric interactions are usually strongly forbidden by the
law of conservation of momentum (phase matching condi-
tion) because WGMs of a dielectric cavity that possess ro-
tational symmetry are orthogonal to one another in mo-
mentum space. Parametric interaction occurs if the
symmetry of the system is broken or modified.

A solution to this problem was recently suggested for
strongly nondegenerate three-wave mixing.3,4 Efficient
resonant interaction of light confined in three optical
WGMs and a microwave field was achieved by engineer-
ing of the geometry of a microwave resonator coupled
with a toroidal LiNbO3 optical cavity. A new kind of
electro-optic modulator–photonic receiver based on this
interaction was suggested and achieved.3–8

Here we propose an approach to achieving parametric
interaction among different WGMs by use of a toroidal
cavity produced from a periodically poled nonlinear
material.9 As an example, we calculate the structure of
the cavity poling that is necessary for creation of a triply
resonant optical parametric oscillator that converts a
pump photon (l0 5 1064 nm) into signal and idler pho-
tons (ls 5 l i 5 2128 nm). Such a parametric oscillator
might have submicrowatt threshold power for realistic
parameters of the system.

Our results are promising for various applications in
nonlinear and quantum optics that range from optical fre-
quency conversion, optical modulation, and photonic re-
ception to production of nonclassical states of light, quan-
tum nondemolition measurements, and quantum
computing.
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2. PHASE MATCHING OF WHISPERING-
GALLERY MODES
The problem of creating efficient wave mixing with
whispering-gallery modes stems from two sources:
frequency-dependent dispersion of the host material of
the dielectric cavity and dispersion introduced by the in-
ternal geometrical mode structure. WGMs of high order
may be understood as dielectric optical waveguides.
WGMs have dispersion that depends on geometry, simi-
larly to waveguides. The frequency of a high-order TE
WGMs may be estimated from the equation
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where l is the wavelength in vacuum; n is the mode order;
e(l) is the susceptibility of the nonlinear material; R is
the radius of the cavity; and aq is the qth root of Airy
function Ai(2z), which is 2.338, 4.088, and 5.521 for
q 5 1, 2, 3, respectively.

Equation (1) was derived under the assumption that
the cavity is a central part of a dielectric sphere or spher-
oid. Because the main sequence of WGMs is localized
close to the sphere equator it is possible to remove an un-
used part of the sphere to create a disk cavity without
changing the mode spectrum. The angle distribution of
the field is determined by Yn,m spherical functions with
angular number n and magnetic number m. For the
main sequence of WGMs we take m 5 n. The radial
WGM profile for a spherical cavity is C(r)
5 Jn11/2(kr)/r, where Jn11/2(kr) is a Bessel function of
the first kind and n 5 0, 1, 2, 3,... . The mode spectrum
results from the boundary condition C(r) → 0 for r → `
and r → 0. Equation (1) is valid for WGMs character-
ized by n @ 1.10
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Cutting a crystal sphere is not practical. One may fab-
ricate a cavity by polishing the rim of a dielectric cylinder
cut from a crystal wafer.7,8 The rim of such a cavity
would not necessarily need to be spherical to maintain
high-Q and small volume WGMs. It was shown experi-
mentally that the rim may be spheroidal or even conical.11

Calculation of the spectrum of an arbitrary dielectric
spheroid is rather complicated. However, Eq. (1) is still
valid for the main mode sequence.8,12

We assume that the cavity is fabricated from a commer-
cial flat Z-cut LiNbO3 substrate, so TE modes correspond
to the extraordinary waves in the material. For example,
let us consider a degenerate optical parametric oscillator
(OPO) pumped at lp 5 1064 nm. Susceptibilities for
pump, signal, and idler waves are e(vp) 5 4.657 and
e(vs) 5 e(v i) 5 4.513, respectively.

To achieve phase matching for such an OPO in a bulk,
congruent LiNbO3 , poling periods L have to obey the fol-
lowing condition:9

kp 2 ks 2 ki 2
2p

L
5 0, (2)

Fig. 1. Dependence of poling period L on cavity radius. It is
easy to see that for a large cavity radius the period coincides with
the period in a bulk medium, whereas for a smaller radius the
period decreases.

Fig. 2. Average detuning of the signal frequency from the near-
est WGM of a dielectric cavity versus cavity radius. The pump
field (lp 5 1.064 mm) is resonant with a mode of the LiNbO3 cav-
ity.
where kp , ks , and ki are the wave vectors of the pump,
the signal, and the idler, respectively. For the degener-
ate case that we consider here, the poling period is deter-
mined by

L 5
lp

Aep 2 Aes

' 31.67 mm. (3)

For a WGM cavity fabricated from the same material
the poling period is different because of the dependence of
the mode dispersion on the cavity’s geometrical param-
eters, as will be shown below. The smaller the cavity, the
shorter the period (see Fig. 1). Moreover, there is no
guarantee that the pump and the signal frequencies are
both resonant with the cavity modes. To characterize
this possibility we assume that the pump is resonant with
a cavity mode and look for the detuning

D

gs
5 Uvp

ṽs
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where gs and Qs are the half-linewidth and the quality
factor of the signal mode, Qs 5 vs /(2gs); ṽs is the
frequency of the cavity mode that minimizes D. If D/
gs , 1 we may say that the signal frequency is resonant
with the cavity mode. The dependence of the detuning
on the cavity radius in not simple. The average depen-
dence is presented in Fig. 2 for Qs 5 107. We may con-
clude from this calculation that the smaller the cavity, the
less the probability that it has both resonant frequencies
vp and vp/2. As follows from Fig. 2, the cavity radius
should exceed 2 mm for this condition to be fulfilled.

However, the condition D/gs , 1 is not critical even for
smaller cavities. The frequency difference may be com-
pensated for by application of a dc bias field to the cavity.
The dc field moves modes of different frequencies in a dif-
ferent way, which results in the frequency matching in
the system.

Let us consider a cavity with radius R 5 0.64 mm and
study the main mode sequence (aq 5 2.338). It is worth
noting that mechanical preparation of high-Q cavities
with such a radius for millimeter-wave electro-optical
modulation was recently demonstrated.8 The mode that
is resonant with the pump field has index np 5 8156.
For the signal and idler modes, ns 5 n i 5 4004. Because
np 2 ns 2 n i 5 148 . 1 there is no parametric interac-
tion in the system unless the nonlinear index of refraction
of the cavity material is modulated with the period deter-
mined by the number nx 5 np 2 ns 2 n i . Modulation
with period nx is indeed the basis for Fig. 1, because nx /ns
increases as R decreases. This periodicity also results in
phase matching for degenerate parametric frequency
downconversion with pump radiation of 1.056, 1.049,
1.041 mm, and so on.

The approximate modulation period is 27.3 mm. It is
easy to achieve such modulation by periodic poling of the
cavity material.9 The volumes of the pump mode, the
signal–idler mode, and modes’ overlap are 1.7 3 1027,
4 3 1027, and 1.5 3 1027 cm3, respectively (see the
mode profiles in Fig. 3). Note that the mode volumes can
also be estimated by use of the asymptotic expression
Vp ' 2pR 3 2R(2p/np)1/2 3 (R/np

2/3), where 2pR is
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the length of the cavity rim, 2R(2p/np)1/2 is the mode size
in the Z direction, and R/np

2/3 is the radial size of the
mode.

The radius of the cavity is contained only in the ratio
R/l in Eq. (1). Therefore the phase matching estab-
lished by the periodic poling of the cavity material is
stable with respect to the radius change, and the radius
change may be compensated for by fine tuning of the
pump laser frequency.

3. PARAMETRIC OSCILLATIONS IN A
WHISPERING-GALLERY MODE CAVITY
Let us now estimate the threshold for parametric oscilla-
tion. The interaction energy between the pump and the
signal modes may be written as

V 5 E
V

x~2 !EpEs
2dV, (5)

where x (2) varies in the space nonlinearity of the cavity,
Ep and Es are the pump and the signal mode amplitudes,
respectively (the signal mode coincides with the idler
mode), and V is the volume of the cavity. We present
mode amplitudes as

Ep 5 S 2p\vp
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where ai and ai
† (i 5 p, s) are annihilation and creation

operators for the mode, Cp(r) and Cs(r) are the mode
spatial profiles normalized such that Vi 5 *VuC i(r)u2dV
(i 5 p, s), vp and vs are the mode frequencies, and ep
and es are the susceptibilities of the material, respec-
tively. The problem of quantization of electromagnetic
waves in dielectrics was discussed in Refs. 13 and 14. We

Fig. 3. Profiles of the field distribution inside a dielectric cavity.
Zero coordinate corresponds to the cavity boundary. In our
model we neglect the evanescent field outside the cavity, which is
a reasonable approximation for high-Q WGMs.
also assume that the nonlinearity of the medium is modu-
lated such that it has a Fourier component that matches
the signal and pump modes: x (2) → 2x̃ (2) cos@(np
2 2ns)f #.

We now write the interaction Hamiltonian in the slowly
varying amplitude and phase approximation:

H 5 \g@~as
†!2ap 1 ap

†as
2#, (8)

where the coupling constant is

g 5 2pvs
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Vpss 5 *V CpCs
2dV , Vp , and Vs is the mode overlap in-

tegral.
Using this Hamiltonian, we derive equations of motion:

ȧp 5 2gpap 2 igas
2 1 Fp , (10)

ȧs 5 2gsas 2 2igas
†ap 1 Fs , (11)

where Fp and Fs are the Langevin forces and gp and gs
are pump and signal decay rates, respectively. The ex-
pectation value ^Fp& describes pumping from outside the
system. We can write the expression uFpu2/gp

2

5 4WpQp /(\vp
2),8 where Qp 5 vp /(2gp) is the mode

quality factor and Wp is the power of the pump radiation.
Solving Eqs. (10) and (11) in steady state and neglect-

ing quantum fluctuations, we find the expectation value
of the photon number for the signal that has been gener-
ated:

uasu2 5
gpgs

2g2 S 2g

gsgp
u^Fp&u 2 1 D , (12)

which results in the threshold condition for parametric
oscillation:
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For realistic parameters (Vpss /Vs 5 0.5, Vp 5 2
3 1027 cm3, ep 5 4.6, es 5 4.5, x̃ (2) 5 1027 cgs, vp
5 2 3 1015 s21, Qs . Qp . 107) the threshold value is
0.1 mW, which is orders of magnitude less than the state-
of-the-art OPO threshold power, e.g., 0.5 mW for similar
wavelengths.15

We believe that the toroidal cavity is better than the
total-internal-reflection cavity used in OPOs pumped at
1064 nm.16 The oscillation threshold depends on the
mode volume and the mode overlap integral. We can re-
duce the mode volume and increase the integral in WGM
cavity.

4. DISCUSSION
Let us discuss the possibilities of fabricating nonlinear
cavities. The optimum poling geometry is symmetric
with respect to the center of the cavity [Fig. 4(a)]. When
the nonlinear index coefficient is modulated with a peri-
odic sign reversal, the Fourier coefficient for the first (fun-
damental) harmonic is ;2/p, as in a periodically poled
bulk material. The dependence of the Fourier coeffi-
cients on the inverse poling period is shown in Fig. 5,
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where we average the discrete spectrum and show its en-
velope function.

Fabrication of centrally symmetric poling is a difficult
task. It seems to be much easier to use a slice of com-
mercially available periodically poled LiNbO3 . The cav-
ity will have poled stripes instead of sectors [see Fig.
4(b)]. For such poling, a wave that travels close to the
cavity surface sees a nonlinear grating with a changing
period. An envelope function for the Fourier decomposi-
tion for such a grating is shown in Fig. 6. Because the
grating does not have a fixed step with respect to the elec-
tromagnetic wave, the maximum Fourier component is
less than in the ideal case (symmetric poling), which leads
to an increase in the oscillation threshold compared with
that for periodic poling (11 times in the case considered).
However, the spectrum of the grating is broad enough to
simplify working with the cavity and to make possible
multifrequency parametric oscillations in the system.

Nonequidistant poling stripes may, in principle, create
more-periodic poling and change the spectrum. How-
ever, cutting a disk from a sample with complicated pol-
ing structure is not an easy task.

It is worth mentioning that the nonlinear system dis-
cussed above may also be used to produce nondegenerate
parametric interactions. Because of the low threshold
the system may also be reversed and used as a detector of
long-wavelength radiation by means of its direct upcon-
version into light. The maximum wavelength of the ra-
diation is determined by the cavity size. To maintain low

Fig. 4. Examples of material poling to achieve phase matching
for WGMs: (a) poling symmetric with respect to the cavity cen-
ter, (b) stripelike poling.

Fig. 5. Envelope function for the amplitudes of Fourier coeffi-
cients for the poling shown in Fig. 4(a).
radiative losses one should make the order of the cavity
mode sufficiently large. For example, for detection of
10-mm radiation the cavity should have a radius of at
least 3.5 mm.

Moreover, periodically poled materials may be used for
construction of electro-optic modulators based on WGM,
instead of the specially shaped microwave cavity that was
utilized for efficient modulation of light in previous
studies.6,8 The usefulness of periodically poled materials
for modulation of light was recognized more than a de-
cade ago17 and further developed.18–21 Possibilities of
parametric interaction among running light-wave and mi-
crowave radiation in a periodically poled WGM cavity as
well as single-sideband electro-optical modulation by use
of nonequidistant modes of a WGM cavity are discussed
in Ref. 22.

5. CONCLUSIONS
We have proposed fabrication of a whispering-gallery-
mode dielectric cavity from a periodically poled nonlinear
material. We have shown that appropriate periodic pol-
ing leads to compensation for the phase mismatch among
cavity modes that results from cavity material dispersion
as well as from geometrical cavity dispersion. We
showed that because of the potential high-quality factors
and small volumes of the modes one can use them to cre-
ate an ultralow-threshold optical parametric oscillator.
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